cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210357 Location of the maximum modulus in the inverse of Hilbert's matrix.

This page as a plain text file.
%I A210357 #10 Mar 30 2012 17:23:03
%S A210357 1,2,2,3,4,5,5,6,7,7,8,9,10,10,11,12,12,13,14,15,15,16,17,17,18,19,19,
%T A210357 20,21,22,22,23,24,24,25,26,27,27,28,29,29,30,31,31,32,33,34,34,35,36,
%U A210357 36,37,38,39,39,40,41,41,42,43,44,44,45,46,46,47,48,48
%N A210357 Location of the maximum modulus in the inverse of Hilbert's matrix.
%C A210357 The maximum value always occurs on the diagonal. These numbers are close to n/sqrt(2).
%H A210357 T. D. Noe, <a href="/A210357/b210357.txt">Table of n, a(n) for n = 1..1000</a>
%t A210357 Table[im = Inverse[HilbertMatrix[n]]; pos = Position[im, Max[Abs[Flatten[im]]]]; If[Length[pos] > 1, Print[{n, pos}]; 0, pos[[1, 1]]], {n, 70}]
%t A210357 Table[t = Table[(2*i-1) Binomial[n+i-1, n-i]^2 * Binomial[2*i-2, i-1]^2, {i, n}]; Position[t, Max[t]][[1, 1]], {n, 100}]
%Y A210357 Cf. A210356 (largest element in the inverse of Hilbert's matrix).
%K A210357 nonn
%O A210357 1,2
%A A210357 _T. D. Noe_, Mar 28 2012