This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210357 #10 Mar 30 2012 17:23:03 %S A210357 1,2,2,3,4,5,5,6,7,7,8,9,10,10,11,12,12,13,14,15,15,16,17,17,18,19,19, %T A210357 20,21,22,22,23,24,24,25,26,27,27,28,29,29,30,31,31,32,33,34,34,35,36, %U A210357 36,37,38,39,39,40,41,41,42,43,44,44,45,46,46,47,48,48 %N A210357 Location of the maximum modulus in the inverse of Hilbert's matrix. %C A210357 The maximum value always occurs on the diagonal. These numbers are close to n/sqrt(2). %H A210357 T. D. Noe, <a href="/A210357/b210357.txt">Table of n, a(n) for n = 1..1000</a> %t A210357 Table[im = Inverse[HilbertMatrix[n]]; pos = Position[im, Max[Abs[Flatten[im]]]]; If[Length[pos] > 1, Print[{n, pos}]; 0, pos[[1, 1]]], {n, 70}] %t A210357 Table[t = Table[(2*i-1) Binomial[n+i-1, n-i]^2 * Binomial[2*i-2, i-1]^2, {i, n}]; Position[t, Max[t]][[1, 1]], {n, 100}] %Y A210357 Cf. A210356 (largest element in the inverse of Hilbert's matrix). %K A210357 nonn %O A210357 1,2 %A A210357 _T. D. Noe_, Mar 28 2012