This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210369 #28 Jul 16 2024 13:07:02 %S A210369 1,10,65,160,457,810,1681,2560,4481,6250,9841,12960,18985,24010,33377, %T A210369 40960,54721,65610,84961,100000,126281,146410,181105,207360,252097, %U A210369 285610,342161,384160,454441,506250,592321,655360,759425,835210,959617,1049760 %N A210369 Number of 2 X 2 matrices with all terms in {0,1,...,n} and even determinant. %C A210369 a(n) is also the number of 2 X 2 matrices with all terms in {0,1,...n} and even permanent. %C A210369 The determinant will be even if either all entries are odd or if both the leading and trailing diagonals have no more than one odd entry each. - _Andrew Howroyd_, Apr 28 2020 %H A210369 Andrew Howroyd, <a href="/A210369/b210369.txt">Table of n, a(n) for n = 0..1000</a> %H A210369 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1, 4, -4, -6, 6, 4, -4, -1, 1). %F A210369 a(n) + A210370(n) = n^4. %F A210369 From _Colin Barker_, Nov 28 2014: (Start) %F A210369 a(n) = (13 + 3*(-1)^n + 4*(13+3*(-1)^n)*n + 2*(37+7*(-1)^n)*n^2 + 4*(11+(-1)^n)*n^3 + 10*n^4)/16. %F A210369 G.f.: -(x^7+9*x^6+27*x^5+83*x^4+59*x^3+51*x^2+9*x+1) / ((x-1)^5*(x+1)^4). %F A210369 (End) %F A210369 a(n) = ((n+1)^2 - ceiling(n/2)^2)^2 + ceiling(n/2)^4. - _Andrew Howroyd_, Apr 28 2020 %t A210369 a = 0; b = n; z1 = 28; %t A210369 t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A210369 c[n_, k_] := c[n, k] = Count[t[n], k] %t A210369 u[n_] := Sum[c[n, 2 k], {k, -n^2, n^2}] %t A210369 v[n_] := Sum[c[n, 2 k - 1], {k, -n^2, n^2}] %t A210369 Table[u[n], {n, 0, z1}] (* A210369 *) %t A210369 Table[v[n], {n, 0, z1}] (* A210370 *) %o A210369 (PARI) a(n) = {((n+1)^2 - ceil(n/2)^2)^2 + ceil(n/2)^4} \\ _Andrew Howroyd_, Apr 28 2020 %Y A210369 Cf. A210000, A210370. %K A210369 nonn %O A210369 0,2 %A A210369 _Clark Kimberling_, Mar 20 2012 %E A210369 Terms a(29) and beyond from _Andrew Howroyd_, Apr 28 2020