This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210372 #11 Nov 28 2016 03:58:22 %S A210372 0,0,17,48,172,320,713,1112,2016,2840,4561,6056,8964,11400,15977, %T A210372 19648,26400,31744,41257,48664,61620,71512,88689,101680,123800,140376, %U A210372 168449,189232,224108,249840,292545 %N A210372 Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive even determinant. %C A210372 See A210000 for a guide to related sequences. %H A210372 Chai Wah Wu, <a href="/A210372/b210372.txt">Table of n, a(n) for n = 0..10000</a> %F A210372 a(n) = (A210369(n) - A059306(n))/2. - _Chai Wah Wu_, Nov 27 2016 %t A210372 a = 0; b = n; z1 = 30; %t A210372 t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A210372 c[n_, k_] := c[n, k] = Count[t[n], k] %t A210372 u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}] %t A210372 v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}] %t A210372 w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}] %t A210372 Table[u[n], {n, 0, z1}] (* A210371 *) %t A210372 Table[v[n], {n, 0, z1}] (* A210372 *) %t A210372 Table[w[n], {n, 0, z1}] (* A210373 *) %Y A210372 Cf. A210000. %K A210372 nonn %O A210372 0,3 %A A210372 _Clark Kimberling_, Mar 20 2012 %E A210372 Offset corrected by _Chai Wah Wu_, Nov 27 2016