A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A210371
Number of 2 X 2 matrices with all elements in {0,1,...,n} and nonnegative even determinant.
Original entry on oeis.org
1, 10, 48, 112, 285, 490, 968, 1448, 2465, 3410, 5280, 6904, 10021, 12610, 17400, 21312, 28321, 33866, 43704, 51336, 64661, 74898, 92416, 105680, 128297, 145234, 173712, 194928, 230333, 256410, 299776
Offset: 0
-
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
A210373
Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive odd determinant.
Original entry on oeis.org
0, 3, 8, 48, 84, 243, 360, 768, 1040, 1875, 2400, 3888, 4788, 7203, 8624, 12288, 14400, 19683, 22680, 30000, 34100, 43923, 49368, 62208, 69264, 85683, 94640, 115248, 126420, 151875, 165600
Offset: 0
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
-
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
Showing 1-3 of 3 results.
Comments