A210373 Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive odd determinant.
0, 3, 8, 48, 84, 243, 360, 768, 1040, 1875, 2400, 3888, 4788, 7203, 8624, 12288, 14400, 19683, 22680, 30000, 34100, 43923, 49368, 62208, 69264, 85683, 94640, 115248, 126420, 151875, 165600
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
Crossrefs
Cf. A210000.
Programs
-
Mathematica
a = 0; b = n; z1 = 30; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}] v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}] w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}] Table[u[n], {n, 0, z1}] (* A210371 *) Table[v[n], {n, 0, z1}] (* A210372 *) Table[w[n], {n, 0, z1}] (* A210373 *)
Formula
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = A210370(n)/2.
a(n) = (2*n + 1 -(-1)^n)^2*(6*n + 5 -(-1)^n)*(2*n + 3 + (-1)^n)/256
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 8.
G.f.: -x*(3*x^5 + 17*x^4 + 16*x^3 + 28*x^2 + 5*x + 3)/((x - 1)^5*(x + 1)^4). (End)
Comments