This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210377 #11 Jul 16 2024 13:17:34 %S A210377 0,0,4,31,80,146,224,315,420,540,676,829,1000,1190,1400,1631,1884, %T A210377 2160,2460,2785,3136,3514,3920,4355,4820,5316,5844,6405,7000,7630, %U A210377 8296,8999,9740,10520,11340,12201,13104,14050,15040,16075,17156,18284 %N A210377 Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n + 5. %C A210377 A210376 is also the number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = 3n - 5. %C A210377 See A210000 for a guide to related sequences. %H A210377 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1). %F A210377 Conjectures from _Colin Barker_, Dec 07 2017: (Start) %F A210377 G.f.: x^2*(4 + 15*x - 20*x^2 - 4*x^3 + 6*x^5) / (1 - x)^4. %F A210377 a(n) = (-504 + 146*n + 21*n^2 + n^3) / 6 for n>3. %F A210377 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5. %F A210377 (End) %t A210377 a = 0; b = n; z1 = 45; %t A210377 t[n_] := t[n] = Flatten[Table[w + x + y + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A210377 c[n_, k_] := c[n, k] = Count[t[n], k] %t A210377 Table[c[n, n + 5], {n, 0, z1}] (* A210377 *) %t A210377 Table[c[n, 3 n - 5], {n, 0, z1}] (* A210377 *) %Y A210377 Cf. A210000. %K A210377 nonn %O A210377 0,3 %A A210377 _Clark Kimberling_, Mar 20 2012