cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210381 Triangle by rows, derived from the beheaded Pascal's triangle, A074909.

This page as a plain text file.
%I A210381 #23 Feb 20 2022 06:05:02
%S A210381 1,0,2,0,1,3,0,1,3,4,0,1,4,6,5,0,1,5,10,10,6,0,1,6,15,20,15,7,0,1,7,
%T A210381 21,35,35,21,8,0,1,8,28,56,70,56,28,9,0,1,9,36,84,126,126,84,36,10,0,
%U A210381 1,10,45,120,210,252,210,120,45,11
%N A210381 Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
%C A210381 Row sums of the triangle = 2^n.
%C A210381 Let the triangle = an infinite lower triangular matrix, M.  Then M * The Bernoulli numbers, A027641/A027642  as a vector V = [1, -1, 0, 0, 0,...].  M * the Bernoulli sequence variant starting [1, 1/2, 1/6,...] = [1, 1, 1,...].  M * 2^n: [1, 2, 4, 8,...] = A027649.  M * 3^n = A255463; while M * [1, 2, 3,...] = A047859, and M * A027649 = A027650.
%C A210381 Row sums of powers of the triangle generate the Poly-Bernoulli number sequences shown in the array of A099594. - _Gary W. Adamson_, Mar 21 2012
%C A210381 Triangle T(n,k) given by (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 25 2012
%D A210381 Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
%F A210381 Partial differences of the beheaded Pascal's triangle A074909 starting from the top, by columns.
%F A210381 G.f.: (1-x)/(1-x-2*y*x+y*x^2+y^2*x^2). - _Philippe Deléham_, Mar 25 2012
%F A210381 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,2) = 3 and T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Mar 25 2012
%e A210381 {1},
%e A210381 {0, 2},
%e A210381 {0, 1, 3},
%e A210381 {0, 1, 3, 4},
%e A210381 {0, 1, 4, 6, 5},
%e A210381 {0, 1, 5, 10, 10, 6},
%e A210381 {0, 1, 6, 15, 20, 15, 7},
%e A210381 {0, 1, 7, 21, 35, 35, 21, 8},
%e A210381 {0, 1, 8, 28, 56, 70, 56, 28, 9},
%e A210381 {0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
%e A210381 {0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
%e A210381 ...
%t A210381 t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
%t A210381 O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
%t A210381 Flatten[O2]
%Y A210381 Cf. A074909, A255463, A026749, A047859, A027650
%Y A210381 Cf. A099594.
%K A210381 nonn,tabl
%O A210381 0,3
%A A210381 _Roger L. Bagula_ and _Gary W. Adamson_, Mar 20 2012