A210394 a(n) = least integer m>1 such that m divides none of S_i!+S_j! with 0
2, 3, 7, 11, 19, 31, 43, 67, 79, 101, 131, 163, 199, 241, 283, 331, 383, 443, 503, 571, 641, 719, 797, 877, 967, 1061, 1163, 1277, 1373, 1481, 1597, 1721, 1871, 1999, 2129, 2281, 2437, 2593, 2749, 2927, 3089, 3271, 3457, 3643, 3833, 4057, 4229, 4441, 4673, 4889
Offset: 1
Keywords
Examples
We have a(3)=7, since m=7 divides none of 2!+(2+3)!,2!+(2+3+5)!,(2+3)!+(2+3+5)! but this fails for m=2,3,4,5,6.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..225
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
Programs
-
Mathematica
s[n_]:=s[n]=Sum[Prime[k],{k,1,n}] f[n_]:=s[n]! R[n_,m_]:=Product[If[Mod[f[k]+f[j],m]==0,0,1],{k,2,n},{j,1,k-1}] Do[Do[If[R[n,m]==1,Print[n," ",m];Goto[aa]],{m,Max[2,s[n-1]],s[n]}]; Print[n];Label[aa];Continue,{n,1,225}]
Comments