This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210425 #15 Aug 30 2021 10:54:56 %S A210425 0,0,4,60,374,1960,9103,40497,174127,735268,3064477,12664101,52005445, %T A210425 212595280,866047122 %N A210425 Number of 3-divided words of length n over a 4-letter alphabet. %C A210425 See A210109 for further information. %C A210425 Row sums of the following table which shows how many words of length n over a 4-letter alphabet are 3-divided in k>=1 different ways: %C A210425 4; %C A210425 41, 14, 5; %C A210425 147, 111, 67, 29, 14, 6; %C A210425 594, 358, 381, 211, 156, 128, 80, 28, 17, 7; %C A210425 2072, 1400, 1433, 875, 821, 669, 588, 369, 340, 240, 163, 72, 33, 20, 8; %C A210425 - _R. J. Mathar_, Mar 25 2012 %o A210425 (Python) %o A210425 from itertools import product %o A210425 def is3div(b): %o A210425 for i in range(1, len(b)-1): %o A210425 for j in range(i+1, len(b)): %o A210425 X, Y, Z = b[:i], b[i:j], b[j:] %o A210425 if all(b < bp for bp in [X+Z+Y, Z+Y+X, Y+X+Z, Y+Z+X, Z+X+Y]): %o A210425 return True %o A210425 return False %o A210425 def a(n): return sum(is3div("".join(b)) for b in product("0123", repeat=n)) %o A210425 print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Aug 30 2021 %Y A210425 Cf. A210109, A210426. %K A210425 nonn %O A210425 1,3 %A A210425 _R. J. Mathar_, Mar 21 2012 %E A210425 a(12)-a(15) from _Michael S. Branicky_, Aug 30 2021