This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210442 #19 Oct 27 2023 19:54:31 %S A210442 1,0,1,1,3,1,7,1,9,4,10,1,44,1,13,13,35,1,80,1,91,17,19,1,457,6,22,22, %T A210442 155,1,741,1,201,25,28,25,2233,1,31,29,1369,1,1653,1,336,285,37,1, %U A210442 9675,8,406,37,453,1,3131,37,3064,41,46,1,73154,1,49,492,1827 %N A210442 Number of partitions of n into proper divisors of n, cf. A027751. %C A210442 For n > 0: a(A000040(n)) = 1 and a(A002808(n)) > 1. %H A210442 Alois P. Heinz, <a href="/A210442/b210442.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 0..197 from Reinhard Zumkeller) %p A210442 with(numtheory): %p A210442 a:= proc(n) local b, l; l:= sort([(divisors(n) minus {n})[]]): %p A210442 b:= proc(m, i) option remember; `if`(m=0 or i=1, 1, %p A210442 `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) %p A210442 end; forget(b): %p A210442 b(n, nops(l)) %p A210442 end: %p A210442 seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 29 2013 %t A210442 a[n_] := Module[{b, l}, l = Most[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0 || i==1, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 02 2017, after _Alois P. Heinz_ *) %o A210442 (Haskell) %o A210442 a210442 n = p (a027751_row n) n where %o A210442 p _ 0 = 1 %o A210442 p [] _ = 0 %o A210442 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %Y A210442 Cf. A065205, A211110, A018818. %K A210442 nonn,look %O A210442 0,5 %A A210442 _Reinhard Zumkeller_, Jan 21 2013