A210445 Least positive integer k with k*n practical.
1, 1, 2, 1, 4, 1, 4, 1, 2, 2, 6, 1, 6, 2, 2, 1, 12, 1, 12, 1, 2, 3, 12, 1, 4, 3, 2, 1, 12, 1, 16, 1, 2, 6, 4, 1, 18, 6, 2, 1, 20, 1, 20, 2, 2, 6, 24, 1, 4, 2, 4, 2, 24, 1, 4, 1, 4, 6, 24, 1, 24, 8, 2, 1, 4, 1, 30, 3, 4, 2, 30, 1, 30, 9, 2, 3, 4, 1, 36, 1, 2, 10, 36, 1, 4, 10, 4, 1, 36, 1, 4, 3, 6, 12, 4, 1, 42, 2, 2, 1
Offset: 1
Examples
a(10)=2 since 2*10=20 is practical but 1*10=10 is not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0) Do[Do[If[pr[k*n]==True,Print[n," ",k];Goto[aa]],{k,1,n}]; Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]
-
PARI
A210445(n)={for(k=1,n,is_A005153(k*n)&&return(k))} \\ (Would return 0 if a(n)>n.) - M. F. Hasler, Jan 20 2013
Formula
a(n) = 1 iff n is in A005153, therefore a(n) > 1 for all odd n>1. - M. F. Hasler, Jan 21 2013
Comments