This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210448 #61 Feb 17 2024 15:03:32 %S A210448 0,3,15,57,195,633,1995,6177,18915,57513,174075,525297,1582035, %T A210448 4758393,14299755,42948417,128943555,387027273,1161475035,3485211537, %U A210448 10457207475,31374768153,94130595915,282404370657,847238277795,2541765165033,7625396158395,22876389801777,68629572058515 %N A210448 Total number of different letters summed over all ternary words of length n. %C A210448 These are the numbers d(n,3) studied by J. L. Martin. - _N. J. A. Sloane_, Sep 13 2014 %C A210448 For n >= 0, the number of ternary sequences of length n+1, that contain at least one pair of same consecutive digits. - _Armend Shabani_, Apr 10 2019 %H A210448 Philippe Flajolet and Robert Sedgewick, <a href="https://ac.cs.princeton.edu/30mgf/">Combinatorial Parameters and MGFs</a>, lecture slides Analytic Combinatorics, 2012. %H A210448 J. L. Martin, <a href="http://www.math.umn.edu/math/slopes.pdf">The slopes determined by n points in the plane</a> [Dead link] %H A210448 Jeremy L. Martin, <a href="https://arxiv.org/abs/math/0302106">The slopes determined by n points in the plane</a>, arXiv:math/0302106 [math.AG], 2003-2006; Duke Math. J. 131 (2006), no. 1, 119-165. See table of d(n,k), but beware errors. %H A210448 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6). %F A210448 E.g.f.: 3*exp(3x) - 3*exp(2x). %F A210448 See Mathematica code for a more transparent version of the e.g.f. %F A210448 Generally for an m-ary word of length n: m*exp(m*x) - m*exp((m-1)*x) %F A210448 From _Alois P. Heinz_, Jan 20 2013: (Start) %F A210448 a(n) = 3*(3^n-2^n) = 3*A001047(n). %F A210448 G.f.: 3*x/((3*x-1)*(2*x-1)). %F A210448 (End) %F A210448 a(n) = A217764(n,5). - _Ross La Haye_, Mar 27 2013 %e A210448 a(2) = 15 because the length 2 words on alphabet {0,1,2} are: 00, 01, 02, 10, 11, 12, 20, 21, 22 and we sum respectively 1 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 1 = 15. %p A210448 a:= n-> 3*(3^n-2^n): %p A210448 seq(a(n), n=0..30); # _Alois P. Heinz_, Jan 20 2013 %t A210448 nn=28; Range[0,nn]!CoefficientList[Series[D[(1+y(Exp[x]-1))^3,y]/.y->1, {x,0,nn}], x] %t A210448 (* Second program: *) %t A210448 LinearRecurrence[{5, -6}, {0, 3}, 30] (* _Jean-François Alcover_, Jan 09 2019 *) %Y A210448 Cf. A000918, A001047, A217764. %Y A210448 A diagonal of the triangle in A079268. %K A210448 nonn,easy %O A210448 0,2 %A A210448 _Geoffrey Critzer_, Jan 20 2013