cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210448 Total number of different letters summed over all ternary words of length n.

This page as a plain text file.
%I A210448 #61 Feb 17 2024 15:03:32
%S A210448 0,3,15,57,195,633,1995,6177,18915,57513,174075,525297,1582035,
%T A210448 4758393,14299755,42948417,128943555,387027273,1161475035,3485211537,
%U A210448 10457207475,31374768153,94130595915,282404370657,847238277795,2541765165033,7625396158395,22876389801777,68629572058515
%N A210448 Total number of different letters summed over all ternary words of length n.
%C A210448 These are the numbers d(n,3) studied by J. L. Martin. - _N. J. A. Sloane_, Sep 13 2014
%C A210448 For n >= 0, the number of ternary sequences of length n+1, that contain at least one pair of same consecutive digits. - _Armend Shabani_, Apr 10 2019
%H A210448 Philippe Flajolet and Robert Sedgewick, <a href="https://ac.cs.princeton.edu/30mgf/">Combinatorial Parameters and MGFs</a>, lecture slides Analytic Combinatorics, 2012.
%H A210448 J. L. Martin, <a href="http://www.math.umn.edu/math/slopes.pdf">The slopes determined by n points in the plane</a> [Dead link]
%H A210448 Jeremy L. Martin, <a href="https://arxiv.org/abs/math/0302106">The slopes determined by n points in the plane</a>, arXiv:math/0302106 [math.AG], 2003-2006; Duke Math. J. 131 (2006), no. 1, 119-165. See table of d(n,k), but beware errors.
%H A210448 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6).
%F A210448 E.g.f.: 3*exp(3x) - 3*exp(2x).
%F A210448   See Mathematica code for a more transparent version of the e.g.f.
%F A210448   Generally for an m-ary word of length n: m*exp(m*x) - m*exp((m-1)*x)
%F A210448 From _Alois P. Heinz_, Jan 20 2013: (Start)
%F A210448 a(n) = 3*(3^n-2^n) = 3*A001047(n).
%F A210448 G.f.: 3*x/((3*x-1)*(2*x-1)).
%F A210448 (End)
%F A210448 a(n) = A217764(n,5). - _Ross La Haye_, Mar 27 2013
%e A210448 a(2) = 15 because the length 2 words on alphabet {0,1,2} are: 00, 01, 02, 10, 11, 12, 20, 21, 22 and we sum respectively 1 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 1 = 15.
%p A210448 a:= n-> 3*(3^n-2^n):
%p A210448 seq(a(n), n=0..30);  # _Alois P. Heinz_, Jan 20 2013
%t A210448 nn=28; Range[0,nn]!CoefficientList[Series[D[(1+y(Exp[x]-1))^3,y]/.y->1, {x,0,nn}], x]
%t A210448 (* Second program: *)
%t A210448 LinearRecurrence[{5, -6}, {0, 3}, 30] (* _Jean-François Alcover_, Jan 09 2019 *)
%Y A210448 Cf. A000918, A001047, A217764.
%Y A210448 A diagonal of the triangle in A079268.
%K A210448 nonn,easy
%O A210448 0,2
%A A210448 _Geoffrey Critzer_, Jan 20 2013