cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210456 Period of the sequence of the digital roots of Fibonacci n-step numbers.

Original entry on oeis.org

1, 24, 39, 78, 312, 2184, 1092, 240, 273, 26232, 11553, 9840, 177144, 14348904, 21523359, 10315734, 48417720, 16120104, 15706236, 5036466318, 258149112, 1162261464, 141214768239, 421900912158, 8857200, 2184, 2271, 28578504864, 21938847432216, 148698308091840
Offset: 1

Views

Author

Keywords

Comments

More precisely, start with 0,0,...,0,1 (with n-1 0's and a single 1); thereafter the next term is the digital root (A010888) of the sum of the previous n terms. This is a periodic sequence and a(n) is the length of the period.
Theorem: a(n) <= 9^n.
Conjecture: All entries >1 are divisible by 3.
Additional terms are a(242)=177144, a(243)=177879.
More: a(728)=1594320, a(729)=1596513, a(2186)=14348904, a(2187)=14355471, a(6560)=129140160, a(6561)=129159849, a(19682)=1162261464, a(19683)=1162320519. - Hans Havermann, Jan 30 2013, Feb 08 2013
The modulus-9 Pisano periods of Fibonacci numbers, k-th order sequences. - Hans Havermann, Feb 10 2013
Conjecture: a(3^n-1)=3^(2*n+1)-3, a(3^n)=3^(2*n+1)+3^(n+1)+3 - Fred W. Helenius (fredh(AT)ix.netcom.com), posting to MathFun, Feb 21 2013

Examples

			Digital roots of Fibonacci numbers (A030132) are 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3,... Thus the period is 24 (1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9).
		

Crossrefs

Cf. Fibonacci numbers, k-th order sequences, A000045 (Fibonacci numbers, k=2), A030132 (digital root, k=2), A001175 (Pisano periods, k=2), A000073 (tribonacci numbers, k=3), A222407 (digital roots, k=3), A046738 (Pisano periods, k=3), A029898 (Pitoun's sequence), A187772, A220555.
Cf. also A010888.

Programs

  • Maple
    A210456:=proc(q,i)
    local d,k,n,v;
    v:=array(1..q);
    for d from 1 to i do
      for n from 1 to d do v[n]:=0; od; v[d+1]:=1;
      for n from d+2 to q do v[n]:=1+((add(v[k],k=n-d-1..n-1)-1) mod 9);
        if add(v[k],k=n-d+1..n)=9*d and v[n-d]=1 then print(n-d); break;
    fi; od; od; end:
    A210456 (100000000,100);
  • Mathematica
    f[n_] := f[n] = Block[{s = PadLeft[{1}, n], c = 1}, s = t = Nest[g, s, n]; While[t = g[t]; s != t, c++]; c]; g[lst_List] := Rest@Append[lst, 1 + Mod[-1 + Plus @@ lst, 9]]; Do[ Print[{n, f[n] // Timing}], {n, 100}]

Extensions

a(23) from Hans Havermann, Jan 30 2013
a(24) from Hans Havermann, Feb 18 2013
a(28) from Robert G. Wilson v, Feb 21 2013
a(29)-a(30) from Hiroaki Yamanouchi, May 04 2015