This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210462 #29 Mar 25 2025 15:29:28 %S A210462 8,7,7,4,3,8,8,3,3,1,2,3,3,4,6,3,8,0,0,2,4,7,5,4,4,4,8,1,7,9,2,6,4,3, %T A210462 4,5,9,4,7,3,0,3,3,0,8,8,8,6,3,9,6,5,7,1,9,9,4,6,4,1,9,8,5,3,2,3,0,4, %U A210462 0,3,2,7,5,6,4,0,4,0,5,4,5,3,6,9,1,1,3,5,4,6,4,2,1,1,2,5,1,5,1,8,2,4,1,8,8,6,8,3,9,5,6,4,0,6,7,1,1,4,6,9,1,4,8,7,9 %N A210462 Decimal expansion of the real part of the complex roots of x^3-x^2+1. %C A210462 The real root is A075778 (negated). The imaginary parts are plus or minus A210463. %C A210462 Real root of 8x^3 - 8x^2 + 2x - 1: an algebraic number of degree 3. - _Charles R Greathouse IV_, Apr 14 2014 %C A210462 The denominator of this algebraic number is 2, since its double is an algebraic integer. - _Charles R Greathouse IV_, Nov 12 2014 %H A210462 <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a> %F A210462 Equals 1/2 + 1/(2*A075778*(A075778+1)). %e A210462 0.87743883312334638002475444817926... %p A210462 A075778neg := proc() %p A210462 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; %p A210462 end proc: %p A210462 A210462 := proc() %p A210462 local a075778; %p A210462 a075778 := A075778neg() ; %p A210462 (1+1/a075778/(a075778-1))/2 ; %p A210462 end proc: %p A210462 evalf(A210462()) ; %t A210462 (2^(2/3)*(25 + 3*Sqrt[69])^(1/3) + 2^(2/3)*(25 - 3*Sqrt[69])^(1/3) + 4)/12 // RealDigits[#, 10, 125]& // First (* _Jean-François Alcover_, Feb 20 2013 *) %o A210462 (PARI) real(polroots(x^3-x^2+1))[2] \\ _Charles R Greathouse IV_, Apr 14 2014 %o A210462 (PARI) polrootsreal(8*x^3-8*x^2+2*x-1)[1] \\ _Charles R Greathouse IV_, Apr 14 2014 %Y A210462 Cf. A075778, A210463. %K A210462 cons,nonn,easy %O A210462 0,1 %A A210462 _R. J. Mathar_, Jan 22 2013