cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210463 Decimal expansion of the absolute value of the imaginary part of the two complex roots of x^3-x^2+1.

This page as a plain text file.
%I A210463 #22 Mar 25 2025 00:57:43
%S A210463 7,4,4,8,6,1,7,6,6,6,1,9,7,4,4,2,3,6,5,9,3,1,7,0,4,2,8,6,0,4,3,9,2,3,
%T A210463 6,7,2,4,0,1,6,3,0,8,4,9,0,6,8,2,4,5,7,4,2,0,1,8,4,7,5,9,2,1,5,4,4,1,
%U A210463 5,2,1,7,8,3,7,8,3,9,7,6,7,7,9,1,1,4,3,7,5,4,9,3,2,9,6,4,1,5,9,0,3,9,2,5,2,8,0,4,8,7,3,3,7,7,3,6,6,0,3,3,4,3,8,9,4
%N A210463 Decimal expansion of the absolute value of the imaginary part of the two complex roots of x^3-x^2+1.
%C A210463 An algebraic number of degree 6. - _Charles R Greathouse IV_, Apr 14 2014
%C A210463 The denominator of this algebraic number is 2, since its double is an algebraic integer. - _Charles R Greathouse IV_, Nov 12 2014
%H A210463 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>
%F A210463 Equals sqrt(1/A075778-A210462^2).
%e A210463 0.744861766619744236593170428604392367240163...
%p A210463 A075778neg := proc()
%p A210463         1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
%p A210463 end proc:
%p A210463 A210463 := proc()
%p A210463         local a075778,a210462 ;
%p A210463         a075778 := A075778neg() ;
%p A210463         a210462 := A210462() ;
%p A210463         -1/a075778-a210462^2 ;
%p A210463         sqrt(%) ;
%p A210463 end proc:
%p A210463 evalf(A210463()) ;
%t A210463 -((2^(1/3)*(25 - 3*Sqrt[69])^(2/3) - 2)/(2*2^(2/3)*Sqrt[3]*(25 - 3*Sqrt[69])^(1/3))) // RealDigits[#, 10, 125]& // First (* _Jean-François Alcover_, Feb 20 2013 *)
%o A210463 (PARI) polrootsreal(64*x^6+32*x^4+4*x^2-23)[2] \\ _Charles R Greathouse IV_, Apr 14 2014
%Y A210463 Cf. A075778, A210462.
%K A210463 cons,easy,nonn
%O A210463 0,1
%A A210463 _R. J. Mathar_, Jan 22 2013