This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210470 #37 Jan 30 2023 02:37:03 %S A210470 841,968,2312,3528,5041,5776,12769,14884,16641,45125,51984,109561, %T A210470 123823,157609,168921,207576,373321,450241,498436,609725,711828, %U A210470 731025,798768,940896,1223048,1590121,1792921,2478843,2481992,2526752,3157729,3964081,5346675,6255001 %N A210470 Powerful numbers (A001694) which can be written as the sum of two relatively prime 3-powerful numbers (A036966) different from 1. %D A210470 Jean-Marie de Konninck, Those Fascinating Numbers, Amer. Math. Soc., 2009. %D A210470 Alonso Del Arte, Posting to the Sequence Fans Mailing List, Mar 10 2011. %H A210470 Amiram Eldar, <a href="/A210470/b210470.txt">Table of n, a(n) for n = 1..100</a> %F A210470 { a in A001694: a=b+c and b,c >1 and b,c in A036966 and gcd(b,c)=1}. - _R. J. Mathar_, May 01 2013 %e A210470 841 = 216+625 ; 968 = 343+625 ; 2312=125+2187; %p A210470 isA210470 := proc(n) %p A210470 if isA001694(n) then %p A210470 for i from 2 do %p A210470 p3 := A036966(i) ; %p A210470 if p3+2 > n then %p A210470 return false; %p A210470 end if; %p A210470 p3comp := n-p3 ; %p A210470 if isA036966(p3comp) and igcd(p3,p3comp) = 1 then %p A210470 # print(n,p3,p3comp) ; %p A210470 return true; %p A210470 end if; %p A210470 end do: %p A210470 return false; %p A210470 else %p A210470 return false; %p A210470 end if; %p A210470 end proc: %p A210470 for n from 1 do %p A210470 if isA210470(n) then %p A210470 printf("%d,",n) ; %p A210470 end if; %p A210470 end do: # _R. J. Mathar_, May 01 2013 %t A210470 With[{max = 10^7}, powQ[n_, e_] := Min[FactorInteger[n][[;; , 2]]] > e; pows = Union[Flatten[Table[i^2*j^3, {j, max^(1/3)}, {i, Sqrt[max/j^3]}]]]; Select[Union[Plus @@@ Select[Tuples[Select[pows, powQ[#, 2] &], {2}], CoprimeQ @@ # &]], # < max && powQ[#, 1] &]] (* _Amiram Eldar_, Jan 30 2023 *) %Y A210470 Cf. A001694, A036966. %K A210470 nonn %O A210470 1,1 %A A210470 _N. J. A. Sloane_, Apr 22 2013 %E A210470 More terms from _Amiram Eldar_, Jan 30 2023