This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210473 #36 Mar 08 2024 01:16:28 %S A210473 3,0,1,0,9,3,1,7,6,3,5,8,3,9,9,8,9,4 %N A210473 Decimal expansion of Sum_{n>=1} 1/(prime(n)*prime(n+1)). %C A210473 Sum of reciprocals of products of successive primes. Differs from A209329 only by the initial term 1/(2*3) = 1/6 = 0.16666... %F A210473 Equals 1/6 + A209329. %e A210473 0.3010931763... = Sum_{n>=1} 1/(prime(n)*prime(n+1)). %e A210473 = 1/(2*3) + 1/(3*5) + 1/(5*7) %e A210473 + 0.03731790933454338 (primes 10 < p(n+1) < 100) %e A210473 + 0.0017430141479028 (primes 100 < p(n+1) < 10^3) %e A210473 + 0.00011767024549033 (primes 10^3 < p(n+1) < 10^4) %e A210473 + 9.018426684045269 e-6 (primes 10^4 < p(n+1) < 10^5) %e A210473 + 7.3452282601302 e-7 (primes 10^5 < p(n+1) < 10^6) %e A210473 + 6.19161299373 e-8 (primes 10^6 < p(n+1) < 10^7) %e A210473 + 5.3439026467 e-9 (primes 10^7 < p(n+1) < 10^8) %e A210473 + 4.70035656 e-10 (primes 10^8 < p(n+1) < 10^9) + ... %t A210473 digits = 10; %t A210473 f[n_Integer] := 1/(Prime[n]*Prime[n+1]); %t A210473 s = NSum[f[n], {n, 1, Infinity}, Method -> "WynnEpsilon", NSumTerms -> 2*10^6, WorkingPrecision -> MachinePrecision]; %t A210473 RealDigits[s, 10, digits][[1]] (* _Jean-François Alcover_, Sep 05 2017 *) %o A210473 (PARI) S(L=10^9,start=3)={my(s=0,q=1/precprime(start));forprime(p=1/q+1,L,s+=q*q=1./p);s} \\ Using 1./p is maybe a little less precise, but using s=0. and 1/p takes about 50% more time. %o A210473 (PARI) {my( tee(x)=printf("%g,",x);x ); t=vector(8,n,tee(S(10^(n+1),10^n))); s=1/2/3+1/3/5+1/5/7; vector(#t,n,s+=t[n])} \\ Shows contribution of sums over (n+1)-digit primes (vector t) and the vector of partial sums; the final value is in s. %Y A210473 Cf. A085548, A209329, A185380. %K A210473 nonn,cons,more %O A210473 0,1 %A A210473 _M. F. Hasler_, Jan 23 2013 %E A210473 Corrected and extended by _Hans Havermann_, Mar 17 2013 using the additional terms of A209329 from _R. J. Mathar_, Feb 08 2013