A210484 Ordered areas of primitive integer Soddyian triangles.
12, 252, 1872, 8400, 17100, 27900, 75852, 178752, 191100, 261072, 378432, 705600, 737100, 1063692, 1343100, 1976400, 2317392, 3483900, 3820752, 4038012, 6061692, 6760512, 8822352, 9305100, 9909900, 12024012
Offset: 1
Keywords
Examples
a(3)=1872 given by m=3, n=1
Links
- Nikolaos Dergiades, The Soddy circles, Forum Geom., 7 (2007) 191-197.
- Frank M. Jackson, Soddyian triangles, Forum Geom., 13 (2013) 1-6.
Crossrefs
Subsequence of A367737.
Programs
-
Mathematica
getpairs[k_] := (list = IntegerPartitions[k, {2}]; n = 1; acceptlist = {}; While[n <= Length[list], If[GCD[list[[n]][[1]], list[[n]][[2]]]==1, (acceptlist=Append[acceptlist, n]; n++), n++]]; Reverse[Table[list[[n]], {n, acceptlist}]]); getlist[j_] := (newlist = getpairs[j]; Table[newlist[[m]][[1]]^2*newlist[[m]][[2]]^2(newlist[[m]][[1]]+newlist[[m]][[2]])^2(newlist[[m]][[1]]^2+newlist[[m]][[2]]^2+newlist[[m]][[1]]*newlist[[m]][[2]]), {m,1,Length[newlist]}]); maxLen = 15; Sort[Flatten[Table[getlist[p], {p,2,maxLen}]]]
Formula
Areas generated by m, n coprime with m >= n as area = m^2*n^2*(m+n)^2*(m^2+m*n+n^2).
Comments