cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210487 a(n) is the smallest possible greatest prime factor of prime(n)^2 - prime(k)^2 for 0 < k < n.

Original entry on oeis.org

5, 2, 3, 3, 3, 5, 3, 5, 5, 3, 5, 3, 3, 5, 5, 3, 5, 3, 7, 3, 5, 3, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 7, 3, 5, 5, 7, 7, 5, 7, 5, 7, 5, 7, 5, 5, 5, 5, 5, 11, 3, 5, 3, 11, 5, 5, 5, 7, 5, 7, 5, 7, 7, 7, 7, 5, 5, 7, 5, 5, 7, 5, 7, 3, 5, 5, 5
Offset: 2

Views

Author

Lei Zhou, Jan 23 2013

Keywords

Comments

a(1) is not defined because there is no prime number smaller than 2.

Examples

			n = 2, prime(2) = 3, 3^2 - prime(1)^2 = 5; so a(2) = 5;
n = 3, prime(3) = 5, 5^2 - prime(1)^2 = 21 = 3*7; 5^2 - prime(2)^2 = 16 = 2^4; Min(7, 2) = 2, so a(3) = 2.
		

Crossrefs

Cf. A000040.

Programs

  • Maple
    A210487 := proc(n)
        local p,k,pk,a ;
        a := ithprime(n)+ithprime(n-1) ;
        p := ithprime(n) ;
        for k from 1 to n-1 do
            kp := ithprime(k) ;
            max(A006530(p+kp), A006530(p-kp)) ;
            a := min(a,%) ;
        end do:
        return a ;
    end proc: # R. J. Mathar, Apr 17 2013
  • Mathematica
    Table[Min[Table[Last[FactorInteger[Prime[i]^2 - Prime[j]^2]][[1]], {j, 1, i - 1}]], {i, 2, 87}]