This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210489 #26 Apr 29 2020 10:02:51 %S A210489 1,1,2,1,3,3,1,4,5,4,1,5,8,7,5,1,6,12,12,9,6,1,7,17,20,16,11,7,1,8,23, %T A210489 32,28,20,13,8,1,9,30,49,48,36,24,15,9,1,10,38,72,80,64,44,28,17,10,1, %U A210489 11,47,102,129,112,80,52,32,19,11,1,12,57,140,201,192,144,96,60,36,21,12 %N A210489 Array read by ascending antidiagonals where row n contains the second partial sums of row n of Pascal's triangle. %C A210489 Appears to be a transposed version of A188553 with a leading column of 1's. %H A210489 Andrew Howroyd, <a href="/A210489/b210489.txt">Table of n, a(n) for n = 0..1325</a> %F A210489 T(n,k) = A193605(n,k). %F A210489 T(n,m) = Sum_{k=1..m} k*binomial(n,m-k). - _Vladimir Kruchinin_, Apr 06 2018 %e A210489 Table starts: %e A210489 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 %e A210489 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 %e A210489 1, 4, 8, 12, 16, 20, 24, 28, 32, 36 %e A210489 1, 5, 12, 20, 28, 36, 44, 52, 60, 68 %e A210489 1, 6, 17, 32, 48, 64, 80, 96, 112, 128 %e A210489 1, 7, 23, 49, 80, 112, 144, 176, 208, 240 %e A210489 1, 8, 30, 72, 129, 192, 256, 320, 384, 448 %e A210489 1, 9, 38, 102, 201, 321, 448, 576, 704, 832 %e A210489 1, 10, 47, 140, 303, 522, 769, 1024, 1280, 1536 %e A210489 1, 11, 57, 187, 443, 825, 1291, 1793, 2304, 2816 %e A210489 1, 12, 68, 244, 630, 1268, 2116, 3084, 4097, 5120 %e A210489 1, 13, 80, 312, 874, 1898, 3384, 5200, 7181, 9217 %e A210489 1, 14, 93, 392, 1186, 2772, 5282, 8584, 12381, 16398 %e A210489 1, 15, 107, 485, 1578, 3958, 8054, 13866, 20965, 28779 %e A210489 1, 16, 122, 592, 2063, 5536, 12012, 21920, 34831, 49744 %e A210489 1, 17, 138, 714, 2655, 7599, 17548, 33932, 56751, 84575 %e A210489 1, 18, 155, 852, 3369, 10254, 25147, 51480, 90683, 141326 %e A210489 1, 19, 173, 1007, 4221, 13623, 35401, 76627, 142163, 232009 %e A210489 1, 20, 192, 1180, 5228, 17844, 49024, 112028, 218790, 374172 %e A210489 1, 21, 212, 1372, 6408, 23072, 66868, 161052, 330818, 592962 %e A210489 1, 22, 233, 1584, 7780, 29480, 89940, 227920, 491870, 923780 %e A210489 1, 23, 255, 1817, 9364, 37260, 119420, 317860, 719790,1415650 %e A210489 1, 24, 278, 2072, 11181, 46624, 156680, 437280,1037650,2135440 %e A210489 1, 25, 302, 2350, 13253, 57805, 203304, 593960,1474930,3173090 %e A210489 1, 26, 327, 2652, 15603, 71058, 261109, 797264,2068890,4648020 %e A210489 1, 27, 353, 2979, 18255, 86661, 332167,1058373,2866154,6716910 %e A210489 1, 28, 380, 3332, 21234, 104916, 418828,1390540,3924527,9583064 %o A210489 (PARI) T(n,m) = {sum(k=1, m, k*binomial(n,m-k))} %o A210489 { for(n=0, 10, for(m=1, 10, print1(T(n,m), ", ")); print) } \\ _Andrew Howroyd_, Apr 28 2020 %Y A210489 Cf. A104734, A132379 (another transposed variant), A188553, A193605. %K A210489 nonn,tabl,easy %O A210489 0,3 %A A210489 _Jakub Jaroslaw Ciaston_, Jan 23 2013 %E A210489 Offset corrected and terms a(55) and beyond from _Andrew Howroyd_, Apr 28 2020