This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210503 #34 Jan 09 2025 18:29:20 %S A210503 15,35,143,323,899,1763,3599,4641,5183,10403,11663,13585,19043,22499, %T A210503 32399,35581,36863,39203,51983,57599,72899,79523,97343,121103,176399, %U A210503 186623,213443,272483,324899,359999,381923,412163,435599,446641,622081,656099,675683 %N A210503 Numbers k that form a primitive Pythagorean triple with k' and sqrt(k^2 + k'^2), where k' is the arithmetic derivative of k. %C A210503 A037074 is a subsequence of this sequence. %C A210503 If k is the product of a pair of twin primes we have k=p(p+2), k'=2(p+1) and sqrt(k^2+k'^2)=(p+1)^2+1=p(p+2)+2=k+2. These numbers are relatively prime and therefore they form a primitive Pythagorean triple. %C A210503 Also in the sequence are the following numbers with four distinct prime factors: %C A210503 4641 = 3*7*13*17 [form p(p+4)*q(q+4)], %C A210503 13585 = 5*11*13*19 [form p(p+6)*q(q+6)], %C A210503 35581 = 7*13*17*23 [form p(p+6)*q(q+6)], %C A210503 446641 = 13*17*43*47 [form p(p+4)*q(q+4)], %C A210503 622081 = 17*23*37*43 [form p(p+6)*q(q+6)], %C A210503 700321 = 19*29*31*41 [form p(p+10)*q(q+10)], %C A210503 From _Ray Chandler_, Jan 25 2017: (Start) %C A210503 24887581 = 47*53*97*103 [form p(p+6)*q(q+6)], %C A210503 43518577 = 59*67*101*109 [form p(p+8)*q(q+8)], %C A210503 115539901 = 83*97*113*127 [form p(p+14)*q(q+14)], %C A210503 158682817 = 89*101*127*139 [form p(p+12)*q(q+12)], %C A210503 305162941 = 103*113*157*167 [form p(p+10)*q(q+10)], %C A210503 1093514641 = 103*107*313*317 [form p(p+4)*q(q+4)], %C A210503 1415940061 = 167*193*197*223 [form p(p+26)*q(q+26)]. %C A210503 And one term with six distinct prime factors: %C A210503 650344079 = 7*11*37*53*59*73. (End) %H A210503 Ray Chandler, <a href="/A210503/b210503.txt">Table of n, a(n) for n = 1..500</a> (terms 1..100 from Paolo P. Lava) %e A210503 m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601. %p A210503 with(numtheory); %p A210503 A210503:= proc(q) %p A210503 local a,n,p; %p A210503 for n from 1 to q do %p A210503 a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); %p A210503 if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n,gcd(a,n^2+a^2))=1 then print(n); fi; %p A210503 od; end: %p A210503 A210503(100000); %o A210503 (Python) %o A210503 from math import sqrt %o A210503 from sympy import factorint %o A210503 from gmpy2 import mpz, is_square, gcd %o A210503 A210503 = [] %o A210503 for n in range(2, 10**5): %o A210503 nd = sum([mpz(n*e/p) for p, e in factorint(n).items()]) %o A210503 if is_square(nd**2+n**2) and gcd(gcd(n, nd), mpz(sqrt(nd**2+n**2))) == 1: %o A210503 A210503.append(n) # _Chai Wah Wu_, Aug 21 2014 %Y A210503 Cf. A003415, A009003, A009004, A037074. %K A210503 nonn %O A210503 1,1 %A A210503 _Paolo P. Lava_, Jan 25 2013