This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210505 #21 Aug 16 2024 18:40:35 %S A210505 0,75,1380,1725,4575,7095,10020,10620,31800,38355,58710,61170,67125, %T A210505 92235,92310,94845,118530,137415,156000,168765,189705,238815,249450, %U A210505 257370,339375,353925,507270,584265,590040,617265,625845,631740,761760,845295,866910,943605 %N A210505 Numbers k for which 2*k+7, 4*k+7, 6*k+7, 8*k+7, 10*k+7 and 12*k+7 are primes. %C A210505 Conjecture. For every odd prime p there exist infinitely many numbers k for which 2*k+p, 4*k+p, ..., 2*(p-1)*k+p are primes. %C A210505 For p=3, cf. A115334, for p=5, cf. A210504. This sequence corresponds to p=7. %C A210505 In general case of prime p, every k == 0 (mod Product{p_2*p_3*...*p_k)), where p_k is the maximal prime < p. %H A210505 Harvey P. Dale, <a href="/A210505/b210505.txt">Table of n, a(n) for n = 0..500</a> %F A210505 a(n) == 0 (mod 15). %t A210505 Select[Range[0, 1000000], PrimeQ[2*# + 7] && PrimeQ[4*# + 7] && PrimeQ[6*# + 7] && PrimeQ[ 8*# + 7] && PrimeQ[ 10*# + 7] && PrimeQ[ 12*# + 7] &] (* _T. D. Noe_, Jan 25 2013 *) %t A210505 Select[Range[0,950000],AllTrue[#*Range[2,12,2]+7,PrimeQ]&] (* _Harvey P. Dale_, Aug 16 2024 *) %Y A210505 Cf. A115334, A210504. %K A210505 nonn %O A210505 0,2 %A A210505 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jan 25 2013