This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210511 #36 Jul 26 2022 21:59:03 %S A210511 331,661,881,991,18181,20201,21211,26261,27271,32321,33331,41411, %T A210511 48481,51511,54541,57571,60601,65651,69691,71711,78781,86861,89891, %U A210511 90901,92921,98981,99991,1041041,1051051,1131131,1191191,1201201,1221221,1231231,1261261,1281281 %N A210511 Primes formed by concatenating k, k, and 1 for k >= 1. %C A210511 This sequence is similar to A030458 and A052089. %H A210511 Vincenzo Librandi, <a href="/A210511/b210511.txt">Table of n, a(n) for n = 1..1000</a> %t A210511 Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* _Alonso del Arte_, Jan 27 2013 *) %t A210511 With[{nn=200},Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn],Range[nn],1}],PrimeQ]] (* _Harvey P. Dale_, Aug 17 2013 *) %o A210511 (Python) %o A210511 import numpy as np %o A210511 def factors(n): %o A210511 return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)) %o A210511 for i in range(1,2000): %o A210511 p1=int(str(i)+str(i)+"1") %o A210511 if len(factors(p1))<3: %o A210511 print(p1) %o A210511 (Python) %o A210511 from sympy import isprime %o A210511 from itertools import count, islice %o A210511 def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1))) %o A210511 print(list(islice(agen(), 36))) # _Michael S. Branicky_, Jul 26 2022 %o A210511 (Magma) [nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // _Bruno Berselli_, Jan 30 2013 %Y A210511 Cf. A030458, A052089. %K A210511 nonn,easy,base %O A210511 1,1 %A A210511 _Abhiram R Devesh_, Jan 26 2013