cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210513 Primes formed by concatenating k, k, and 7.

Original entry on oeis.org

227, 337, 557, 887, 997, 11117, 24247, 26267, 27277, 29297, 30307, 32327, 39397, 48487, 51517, 54547, 60607, 62627, 65657, 68687, 69697, 72727, 74747, 78787, 81817, 87877, 89897, 90907, 92927, 93937, 95957, 101710177, 101910197, 103110317, 103410347, 103810387
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This sequence is similar to A030458, A052089, and A092994.
Base considered is 10.
Observations:
- k cannot be a multiple of 7.
- k cannot have a digital root 7 as the sum of the digits would be divisible by 3.
- There is no k between 100 and 1000 that can form a prime number of this form after 95957 the next prime is 101710177.
- k cannot have a digital root equal to 1 or 4, because then in the concatenation it contributes 2 or 8 to the digital root of the number, and that number is then divisible by 3.

Examples

			For k = 2, a(1) = 227.
For k = 3, a(2) = 337.
For k = 5, a(3) = 557.
For k = 8, a(4) = 887.
For k = 9, a(5) = 997.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {7}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Feb 01 2013 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
    for i in range(1, 2000):
        p1=int(str(i)+str(i)+"7")
        if len(factors(p1))<3:
            print(p1, end=',')
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from filter(isprime, (int(str(k)+str(k)+'7') for k in count(1)))
    print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022

Extensions

a(34) and beyond from Michael S. Branicky, Jul 26 2022