This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210514 #27 Jul 26 2022 21:58:58 %S A210514 229,449,11119,14149,22229,28289,31319,37379,44449,49499,52529,56569, %T A210514 67679,70709,71719,80809,86869,89899,94949,95959,1061069,1101109, %U A210514 1131139,1151159,1161169,1191199,1241249,1251259,1331339,1401409,1431439,1481489,1571579,1601609 %N A210514 Prime numbers generated by concatenating k, k, and 9. %C A210514 This series is similar to A030458 and A052089. %C A210514 Base considered is 10. %H A210514 Michael S. Branicky, <a href="/A210514/b210514.txt">Table of n, a(n) for n = 1..10000</a> %e A210514 For k=2, a(1)= 229. %e A210514 For k=4, a(2)= 449. %e A210514 For k=11, a(3)= 11119. %e A210514 For k=14, a(4)= 14149. %t A210514 Select[Table[FromDigits[Flatten[Join[IntegerDigits/@{n,n},{9}]]],{n,200}],PrimeQ] (* _Harvey P. Dale_, Apr 23 2015 *) %o A210514 (Python) %o A210514 import numpy as np %o A210514 from functools import reduce %o A210514 def factors(n): %o A210514 return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)) %o A210514 for i in range(1, 2000): %o A210514 p1=int(str(i)+str(i)+"1") %o A210514 if len(factors(p1))<3: %o A210514 print(p1, end=',') %o A210514 (Python) %o A210514 from sympy import isprime %o A210514 from itertools import count, islice %o A210514 def agen(): yield from filter(isprime, (int(str(k)+str(k)+'9') for k in count(1))) %o A210514 print(list(islice(agen(), 34))) # _Michael S. Branicky_, Jul 26 2022 %Y A210514 Cf. A030458, A052089. %K A210514 base,nonn,easy %O A210514 1,1 %A A210514 _Abhiram R Devesh_, Jan 26 2013 %E A210514 a(27) and beyond from _Michael S. Branicky_, Jul 26 2022