This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210516 #33 Jun 13 2017 03:53:42 %S A210516 0,1,2,7,3,3,2,0,3,6,5,4,15,7,5,8,9,3,11,6,7,16,1,0,8,2,7,4,3,4,16,5, %T A210516 7,25,4,17,19,5,13,12,6,7,17,18,8,6,7,3,0,3,22,4,3,8,31,14,10,6,9,11, %U A210516 26,12,19,21,32,10,9,10,1,31,8,7,18,2,8,16,11,76 %N A210516 The length-1 of the Collatz (3k+1) sequence for all odd fractions and integers. %C A210516 This sequence is the unification, in the limit, of the length of Collatz sequences for all fractions whose denominator is odd, and also all integers. %C A210516 The sequence A210483 gives the triangle read by rows giving trajectory of k/(2n+1) in Collatz problem, k = 1..2n, but particular attention should be paid to numbers in the triangle T(n,k) = (n-k)/(2k+1) for n = 1,2,... and k = 0..n-1. %C A210516 The example shown below gives a general idea of this regular triangle. This contains all fractions whose denominator is odd and all integers. Now, from T(n,k) we could introduce a 3D triangle in order to produce a complete Collatz sequence starting from each rational T(n,k). %C A210516 Remark: a(A000124(n)) = A006577(n) because the first column of this triangle generates A006577. %C A210516 The triangle T(n,k) begins %C A210516 1; %C A210516 2, 1/3; %C A210516 3, 2/3, 1/5; %C A210516 4, 3/3, 2/5, 1/7; %C A210516 5, 4/3, 3/5, 2/7, 1/9; %C A210516 6, 5/3, 4/5, 3/7, 2/9, 1/11; %C A210516 ... %H A210516 Michel Lagneau, <a href="/A210516/b210516.txt">Rows n = 1..100, flattened</a> %H A210516 J. C. Lagarias, <a href="http://pldml.icm.edu.pl:80/mathbwn/element/bwmeta1.element.bwnjournal-article-aav56i1p33bwm?q=bwmeta1.element.bwnjournal-number-aa-1990-56-1&qt=CHILDREN-STATELESS">The set of rational cycles for the 3x+1 problem,</a> Acta Arith. 56 (1990), 33-53. %e A210516 The triangle of lengths begins %e A210516 0; %e A210516 1, 2; %e A210516 7, 3, 3; %e A210516 2, 0, 3, 6; %e A210516 5, 4, 15, 7, 5; %e A210516 ... %e A210516 Individual numbers have the following Collatz sequences: %e A210516 [1] => [0] (0 iteration); %e A210516 [2 1/3] => [1, 2] because: 2 -> 1 => 1 iteration; 1/3 -> 2 -> 1 => 2 iterations; %e A210516 [3 2/3 1/5] => [7, 3, 3] because: 3->10->5->16->8->4->2->1 => 7 iterations; 2/3 -> 1/3 -> 2 -> 1 => 3 iterations; 1/5 -> 8/5 -> 4/5 -> 2/5 => 3 iterations. %t A210516 Collatz2[n_] := Module[{lst = NestWhileList[If[EvenQ[Numerator[#]], #/2, 3 # + 1] &, n, Unequal, All]}, If[lst[[-1]] == 1, lst = Drop[lst, -3], If[lst[[-1]] == 2, lst = Drop[lst, -2], If[lst[[-1]] == 4, lst = Drop[lst, -1], If[MemberQ[Rest[lst], lst[[-1]]], lst = Drop[lst, -1]]]]]]; t = Table[s = Collatz2[(n - k)/(2*k + 1)]; Length[s] - 1, {n, 12}, {k, 0, n - 1}]; Flatten[t] (* _T. D. Noe_, Jan 28 2013 *) %Y A210516 Cf. A210483, A210468, A210688. %K A210516 nonn,tabl %O A210516 1,3 %A A210516 _Michel Lagneau_, Jan 26 2013