A210523 Record values of Dedekind psi function.
1, 3, 4, 6, 12, 18, 24, 36, 48, 72, 96, 108, 144, 168, 192, 216, 240, 288, 360, 384, 432, 576, 648, 672, 720, 864, 1008, 1152, 1296, 1344, 1440, 1728, 1800, 2016, 2304, 2592, 2880, 3024, 3456, 4032, 4320, 4608, 5184
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..808 (terms 1..373 from Enrique Pérez Herrero)
Programs
-
Maple
N:= 100: # to get a(1) to a(N) A001615 := proc(n) n*mul((1+1/i[1]), i=ifactors(n)[2]) end: count:= 0: val:= -infinity: for i from 1 while count < N do v:= A001615(i); if v > val then val:= v; count:= count+1; A[count]:=v; fi od: seq(A[i],i=1..N); # Robert Israel, Nov 19 2014
-
Mathematica
JordanTotient[n_,k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#]&] /; (n>0) && IntegerQ[n]; DedekindPsi[n_] := JordanTotient[n,2]/EulerPhi[n]; a=1; lst={a}; Do[b=DedekindPsi[n]; If[b>a, a=b; AppendTo[lst,b]], {n,2000}]; lst psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); seq = {}; pmax = 0; Do[pmax = psi[n]; If[p > pmax, pmax = p; AppendTo[seq, p]], {n, 1, 10^5}]; seq (* Amiram Eldar, Nov 26 2019 *)
Comments