This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210534 #32 Jun 11 2019 19:47:20 %S A210534 331,661,881,991,12211,14411,15511,20021,21121,23321,24421,29921, %T A210534 33331,35531,41141,45541,47741,50051,51151,57751,59951,63361,71171, %U A210534 72271,74471,75571,81181,84481,99991,1022011,1255211,1299211,1311311,1344311,1355311 %N A210534 Primes formed by concatenating palindromes having even number of digits with 1. %C A210534 Analogous to A210511, except that the second n is digit reversed. If the first (leftmost) n were reversed, we would have problems with trailing zeros becoming leading zeros, which get removed in OEIS formatting. That is a slightly different sequence is given by the formula primes of the form n concatenated with A004086(n) concatenated with "1"; or Primes of form a(n) = (n*10^A055642(n)+A004086(n)) concatenated with "1". %C A210534 There are 190 terms up to all 6-digit palindromes (i.e., 7-digit primes), 1452 terms up to all 8-digit palindromes (i.e., 9-digit primes), and 11724 terms up to all 10-digit palindromes (i.e., 11-digit primes). - _Harvey P. Dale_, Jul 06 2018 %H A210534 Harvey P. Dale, <a href="/A210534/b210534.txt">Table of n, a(n) for n = 1..1452</a> %e A210534 a(18) = 50 concatenated with R(50)=05 concatenated with "1" = 50051, which is prime. %p A210534 fulldigRev := proc(n) %p A210534 local digs ; %p A210534 digs := convert(n,base,10) ; %p A210534 [op(ListTools[Reverse](digs)),op(digs)] ; %p A210534 end proc: %p A210534 for n from 1 to 150 do %p A210534 r := [1,op(fulldigRev(n))] ; %p A210534 p := add(op(i,r)*10^(i-1),i=1..nops(r)) ; %p A210534 if isprime(p) then %p A210534 printf("%d,",p); %p A210534 end if; %p A210534 end do: # _R. J. Mathar_, Feb 21 2013 %t A210534 10#+1&/@Select[Table[FromDigits[Join[IntegerDigits[n],Reverse[ IntegerDigits[ n]]]],{n,9999}],PrimeQ[10#+1]&](* _Harvey P. Dale_, Jul 06 2018 *) %t A210534 10#+1&/@Select[Flatten[Table[Range[10^n,10^(n+1)],{n,1,5,2}]], PalindromeQ[ #] && PrimeQ[10#+1]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 11 2019 *) %Y A210534 Cf. A000040, A004086, A210511. %K A210534 nonn,base,easy %O A210534 1,1 %A A210534 _Jonathan Vos Post_, Jan 30 2013