cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210535 Second inverse function (numbers of columns) for pairing function A209293.

This page as a plain text file.
%I A210535 #23 Feb 16 2025 08:33:17
%S A210535 1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,6,5,3,1,2,4,6,7,5,3,1,2,4,6,8,7,5,
%T A210535 3,1,2,4,6,8,9,7,5,3,1,2,4,6,8,10,9,7,5,3,1,2,4,6,8,10,11,9,7,5,3,1,2,
%U A210535 4,6,8,10,12,11,9,7,5,3,1,2,4,6,8,10,12
%N A210535 Second inverse function (numbers of columns) for pairing function A209293.
%H A210535 Boris Putievskiy, <a href="/A210535/b210535.txt">Rows n = 1..140 of triangle, flattened</a>
%H A210535 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.
%H A210535 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%F A210535 a(n) = 2*A200260(n)-A101688(n)*(4*A002260(n)-2*A003056(n)-3).
%F A210535 a(n) = 2*i-v*(4*i-2*t-3), where t = floor((-1+sqrt(8*n-7))/2), i = n-t*(t+1)/2, v = floor((2*n+1-t*(t+1))/(t+3)).
%e A210535 The start of the sequence as triangle array read by rows:
%e A210535   1;
%e A210535   2,1;
%e A210535   2,3,1;
%e A210535   2,4,3,1;
%e A210535   2,4,5,3,1;
%e A210535   2,4,6,5,3,1;
%e A210535   2,4,6,7,5,3,1;
%e A210535   2,4,6,8,7,5,3,1;
%e A210535   . . .
%e A210535 Row number r contains permutation numbers from 1 to r: 2,4,6,...2*floor(r/2),2*floor(r/2)-1,2*floor(r/2)-3,...3,1.
%o A210535 (Python)
%o A210535 t=int((math.sqrt(8*n-7)-1)/2)
%o A210535 i=n-t*(t+1)/2
%o A210535 v=int((2*n+1-t*(t+1))/(t+3))
%o A210535 result=2*i-v*(4*i-2*t-3)
%Y A210535 Cf. A209293, A200260, A101688, A003056, A220073.
%K A210535 nonn
%O A210535 1,2
%A A210535 _Boris Putievskiy_, Jan 28 2013