cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210549 Triangle of coefficients of polynomials u(n,x) jointly generated with A210550; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 3, 9, 8, 1, 3, 10, 25, 16, 1, 3, 10, 33, 65, 32, 1, 3, 10, 34, 104, 161, 64, 1, 3, 10, 34, 115, 311, 385, 128, 1, 3, 10, 34, 116, 381, 886, 897, 256, 1, 3, 10, 34, 116, 395, 1224, 2421, 2049, 512, 1, 3, 10, 34, 116, 396, 1334, 3796, 6388
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

Each row begins with 1 and ends with 2^(n-1).
Row sums: 1,3,8,21,..., the even-indexed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...2
1...3...4
1...3...9....8
1...3...10...25...16
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]      (* A210235 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]      (* A210236 *)

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.