A210550 Triangle of coefficients of polynomials v(n,x) jointly generated with A210549; see the Formula section.
1, 2, 2, 2, 6, 4, 2, 7, 16, 8, 2, 7, 23, 40, 16, 2, 7, 24, 71, 96, 32, 2, 7, 24, 81, 207, 224, 64, 2, 7, 24, 82, 266, 575, 512, 128, 2, 7, 24, 82, 279, 843, 1535, 1152, 256, 2, 7, 24, 82, 280, 939, 2572, 3967, 2560, 512, 2, 7, 24, 82, 280, 955, 3102, 7565, 9983
Offset: 1
Examples
First five rows: 2 2...2 2...6...4 2...7...16....8 2...7...28....40...16 First three polynomials v(n,x): 2, 2 + 2x , 2 + 6x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210549 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210550 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1
where u(1,x)=1, v(1,x)=1.
Comments