This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210554 #18 Sep 18 2018 17:00:38 %S A210554 1,2,2,3,5,4,4,9,12,8,5,14,25,28,16,6,20,44,66,64,32,7,27,70,129,168, %T A210554 144,64,8,35,104,225,360,416,320,128,9,44,147,363,681,968,1008,704, %U A210554 256,10,54,200,553,1182,1970,2528,2400,1536,512 %N A210554 Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section. %C A210554 For a discussion and guide to related arrays, see A208510. %C A210554 Also the number of multisets of size k that fit within some normal multiset of size n. A multiset is normal if it spans an initial interval of positive integers. - _Andrew Howroyd_, Sep 18 2018 %H A210554 Andrew Howroyd, <a href="/A210554/b210554.txt">Table of n, a(n) for n = 1..1275</a> %F A210554 u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1, %F A210554 v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A210554 where u(1,x)=1, v(1,x)=1. %F A210554 T(n,k) = Sum_{i=1..k} binomial(k-1, i-1)*binomial(n-k+i, i). - _Andrew Howroyd_, Sep 18 2018 %F A210554 T(n,k) = (n - k + 1)*hypergeom([1 - k, n - k + 2], [2], -1). - _Peter Luschny_, Sep 18 2018 %e A210554 Triangle begins: %e A210554 1; %e A210554 2, 2; %e A210554 3, 5, 4; %e A210554 4, 9, 12, 8; %e A210554 5, 14, 25, 28, 16; %e A210554 6, 20, 44, 66, 64, 32; %e A210554 7, 27, 70, 129, 168, 144, 64; %e A210554 ... %e A210554 First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2. %e A210554 The T(3, 1) = 3 multisets: (1), (2), (3). %e A210554 The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23). %e A210554 The T(3, 3) = 4 multisets: (111), (112), (122), (123). %p A210554 T := (n,k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)): %p A210554 seq(seq(T(n,k), k=1..n), n=1..10); # _Peter Luschny_, Sep 18 2018 %t A210554 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210554 u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; %t A210554 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A210554 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210554 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210554 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210554 TableForm[cu] %t A210554 Flatten[%] (* A208341 *) %t A210554 Table[Expand[v[n, x]], {n, 1, z}] %t A210554 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210554 TableForm[cv] %t A210554 Flatten[%] (* A210554 *) %o A210554 (PARI) T(n,k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ _Andrew Howroyd_, Sep 18 2018 %Y A210554 Row sums are A027941. %Y A210554 Cf. A160232, A208341, A208510, A303974. %K A210554 nonn,tabl %O A210554 1,2 %A A210554 _Clark Kimberling_, Mar 22 2012 %E A210554 Example corrected by _Philippe Deléham_, Mar 23 2012