A210557 Triangle of coefficients of polynomials u(n,x) jointly generated with A210558; see the Formula section.
1, 1, 2, 1, 3, 5, 1, 4, 10, 12, 1, 5, 16, 30, 29, 1, 6, 23, 56, 87, 70, 1, 7, 31, 91, 185, 245, 169, 1, 8, 40, 136, 334, 584, 676, 408, 1, 9, 50, 192, 546, 1158, 1784, 1836, 985, 1, 10, 61, 260, 834, 2052, 3850, 5312, 4925, 2378, 1, 11, 73, 341, 1212, 3366
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 3, 5; 1, 4, 10, 12; 1, 5, 16, 30, 29; First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 5x^2. From _Philippe Deléham_, Mar 23 2012: (Start) (1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 3, 5, 0; 1, 4, 10, 12, 0; 1, 5, 16, 30, 29, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210557 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210558 *)
Formula
u(n,x) = x*u(n-1,x) + x*v(n-1,x)+1,
v(n,x) = 2x*u(n-1,x) + (x+1)v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 23 2012. (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - 2*y*x + y*x^2 - y^2*x^2)/(1 - x - 2*y*x + y*x^2 - y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments