This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210565 #12 May 25 2021 01:37:47 %S A210565 1,2,2,3,5,3,4,9,10,5,5,14,22,20,8,6,20,40,51,38,13,7,27,65,105,111, %T A210565 71,21,8,35,98,190,256,233,130,34,9,44,140,315,511,594,474,235,55,10, %U A210565 54,192,490,924,1295,1324,942,420,89,11,65,255,726,1554,2534,3130,2860,1836,744,144 %N A210565 Triangle of coefficients of polynomials u(n,x) jointly generated with A210595; see the Formula section. %C A210565 Row n starts with n and ends with F(n+1), where F=A000045 (Fibonacci numbers). %C A210565 Row sums: A005409. %C A210565 Alternating row sums: 1,0,1,0,1,0,1,0,1,0,1,0, ... %C A210565 For a discussion and guide to related arrays, see A208510. %H A210565 G. C. Greubel, <a href="/A210565/b210565.txt">Rows n = 1..30 of the triangle, flattened</a> %F A210565 u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1, %F A210565 v(n,x) = x*u(n-1,x) + v(n-1,x) + 1, %F A210565 where u(1,x) = 1, v(1,x) = 1. %F A210565 T(n, k) = [x^k]( u(n, x) ), where u(n, x) = (1+x)*u(n-1,x) + x^2*u(n-2,x) + 1 + x, u(1, x) = 1, and u(2, x) = 2 + 2*x. - _G. C. Greubel_, May 24 2021 %e A210565 First five rows: %e A210565 1; %e A210565 2, 2; %e A210565 3, 5, 3; %e A210565 4, 9, 10, 5; %e A210565 5, 14, 22, 20, 8; %e A210565 First three polynomials u(n,x): %e A210565 u(1, x) = 1; %e A210565 u(2, x) = 2 + 2*x; %e A210565 u(3, x) = 3 + 5*x + 3*x^2. %t A210565 (* First program *) %t A210565 u[1, x_]:= 1; v[1, x_]:= 1; z = 16; %t A210565 u[n_, x_]:= x*u[n-1, x] + (x+1)*v[n-1, x] + 1; %t A210565 v[n_, x_]:= x*u[n-1, x] + v[n-1, x] + 1; %t A210565 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210565 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210565 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210565 TableForm[cu] %t A210565 Flatten[%] (* A210565 *) %t A210565 Table[Expand[v[n, x]], {n, 1, z}] %t A210565 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210565 TableForm[cv] %t A210565 Flatten[%] (* A210595 *) %t A210565 (* Second program *) %t A210565 u[n_, x_]:= u[n, x]= If[n<2, (n+1)*(1+x)^n, (1+x)*u[n-1, x] +x^2*u[n-2, x] +1+x]; %t A210565 T[n_]:= CoefficientList[Series[u[n, x], {x, 0, n}], x]; %t A210565 Table[T[n-1], {n,12}] (* _G. C. Greubel_, May 23 2021 *) %o A210565 (Sage) %o A210565 @CachedFunction %o A210565 def u(n,x): return (n+1)*(1+x)^n if (n<2) else (1+x)*u(n-1,x) + x^2*u(n-2,x) +1+x %o A210565 def T(n): return taylor( u(n,x) , x,0,n).coefficients(x, sparse=False) %o A210565 flatten([T(n-1) for n in (1..12)]) # _G. C. Greubel_, May 23 2021 %Y A210565 Cf. A208510, A210595. %K A210565 nonn,tabl %O A210565 1,2 %A A210565 _Clark Kimberling_, Mar 23 2012