This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210587 #28 Feb 03 2025 09:48:11 %S A210587 1,1,3,1,12,16,1,35,150,125,1,90,900,2160,1296,1,217,4410,22295,36015, %T A210587 16807,1,504,19264,179200,573440,688128,262144,1,1143,78246,1240029, %U A210587 6889050,15707034,14880348,4782969,1,2550,302500,7770000,69510000,264600000,462000000,360000000,100000000 %N A210587 Triangle T(n,k) read by rows: T(n,k) is the number of unrooted hypertrees on n labeled vertices with k hyperedges, n >= 2, 1 <= k <= n-1. %C A210587 See A210586 for the definition of a hypertree and for the enumeration of rooted hypertrees. %H A210587 Andrew Howroyd, <a href="/A210587/b210587.txt">Table of n, a(n) for n = 2..1276</a> %H A210587 Roland Bacher, <a href="https://arxiv.org/abs/1102.2708">On the enumeration of labelled hypertrees and of labelled bipartite trees</a>, arXiv:1102.2708 [math.CO], 2011. %H A210587 J. McCammond and J. Meier, <a href="http://www.math.ucsb.edu/~mccammon/papers/htpandelltwo.pdf">The hypertree poset and the l^2-Betti numbers of the motion group of the trivial link</a>, Mathematische Annalen 328 (2004), no. 4, 633-652. %F A210587 T(n,k) = n^(k-1)*Stirling2(n-1,k). T(n,k) = 1/n*A210586(n,k). %F A210587 E.g.f.: A(x,t) = t + x*t^2/2! + (x + 3*x^2)*t^3/3! + ..., where t*d/dt(A(x,t)) is the e.g.f. for A210586. %F A210587 Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^(k-1)*k^(n-1)x^k/k!. %F A210587 Row sums A030019. %e A210587 Triangle begins %e A210587 .n\k.|....1.....2......3......4......5......6 %e A210587 = = = = = = = = = = = = = = = = = = = = = = = %e A210587 ..2..|....1 %e A210587 ..3..|....1.....3 %e A210587 ..4..|....1....12.....16 %e A210587 ..5..|....1....35....150....125 %e A210587 ..6..|....1....90....900...2160...1296 %e A210587 ..7..|....1...217...4410..22295..36015..16807 %e A210587 ... %e A210587 Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}. %e A210587 ........__________........................ %e A210587 ......./..........\.______................ %e A210587 ......|....1...../.\......\............... %e A210587 ......|.........|.3.|....4.|.............. %e A210587 ......|....2.....\./______/............... %e A210587 .......\__________/....................... %e A210587 .......................................... %e A210587 T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges: %e A210587 {1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4}; %e A210587 {1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4}; %e A210587 {1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4}; %e A210587 {2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}. %p A210587 with(combinat): %p A210587 A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k): %p A210587 for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do; %p A210587 # _Peter Bala_, Oct 28 2015 %t A210587 T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k]; %t A210587 Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* _Jean-François Alcover_, Sep 19 2019 *) %o A210587 (PARI) T(n,k) = {n^(k-1)*stirling(n-1,k,2)} %o A210587 for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Aug 28 2018 %Y A210587 Cf. A030019 (row sums). Cf. A210586, A048993. %K A210587 nonn,easy,tabl %O A210587 2,3 %A A210587 _Peter Bala_, Mar 26 2012