cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210589 Numbers which, when divided by their first digit, have their last digit as remainder.

This page as a plain text file.
%I A210589 #33 Dec 23 2024 14:53:43
%S A210589 10,20,21,30,31,32,40,41,42,43,50,51,52,53,54,60,61,62,63,64,65,70,71,
%T A210589 72,73,74,75,76,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98,
%U A210589 100,110,120,130,140,150,160,170,180,190,200,201,210,211,220,221,230,231,240,241
%N A210589 Numbers which, when divided by their first digit, have their last digit as remainder.
%C A210589 Coincides with A071590 up to the 79th term, A071590(79)=310 is not in this sequence.
%C A210589 _Charles R Greathouse IV_ observes that this is an automatic sequence in the terminology of Allouche & Shallit.
%C A210589 See A210582 for the obvious "symmetric" counterpart: first digit = x mod last digit. - _M. F. Hasler_, Jan 14 2014
%H A210589 Vincenzo Librandi, <a href="/A210589/b210589.txt">Table of n, a(n) for n = 1..7000</a>
%H A210589 Charles R Greathouse IV, in reply to E. Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2012-March/016609.html">Re: Divided by first digit, have last digit as remainder</a>, SeqFan list, Mar 21 2012
%H A210589 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%t A210589 ldrQ[n_]:=Module[{idn=IntegerDigits[n],f,l},f=First[idn];l=Last[idn];Mod[n,f]==l]; Select[Range[10000],ldrQ]  (* _Harvey P. Dale_, Mar 21 2012 *)
%o A210589 (PARI) is_A210589(x)=x%(x\10^(#Str(x)-1))==x%10
%o A210589 (Magma) [ n: n in [1..249] | n mod d[#d] eq d[1] where d is Intseq(n) ]; // _Bruno Berselli_, Mar 23 2012
%o A210589 (Python)
%o A210589 def ok(n): s = str(n); return n > 0 and n%int(s[0]) == int(s[-1])
%o A210589 print([k for k in range(242) if ok(k)]) # _Michael S. Branicky_, Oct 20 2021
%K A210589 nonn,base,easy
%O A210589 1,1
%A A210589 _Eric Angelini_ (idea) and _M. F. Hasler_, Mar 23 2012