cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210596 Triangle read by rows of coefficients of polynomials v(n,x) jointly generated with A210221; see the Formula section.

This page as a plain text file.
%I A210596 #38 Jun 27 2025 23:25:27
%S A210596 1,1,2,2,2,4,3,6,4,8,5,10,16,8,16,8,20,28,40,16,32,13,36,64,72,96,32,
%T A210596 64,21,66,124,184,176,224,64,128,34,118,248,376,496,416,512,128,256,
%U A210596 55,210,476,808,1056,1280,960,1152,256,512,89,370,908,1640,2416
%N A210596 Triangle read by rows of coefficients of polynomials v(n,x) jointly generated with A210221; see the Formula section.
%C A210596 Row n begins with F(n) and ends with 2^(n-1), where F = A000045 (Fibonacci numbers)
%C A210596 Row sums:  odd-indexed Fibonacci numbers, see A001519.
%C A210596 For a discussion and guide to related arrays, see A208510.
%C A210596 Riordan array (1/(1 - z - z^2), 2*z*(1 - z)/(1 - z - z^2)). - _Peter Bala_, Dec 30 2015
%H A210596 G. C. Greubel, <a href="/A210596/b210596.txt">Rows n=1..102 of triangle, flattened</a>
%F A210596 u(n,x) = u(n-1,x) + v(n-1,x),
%F A210596 v(n,x) = u(n-1,x) + 2x*v(n-1,x),
%F A210596 where u(1,x) = 1, v(1,x) = 1.
%F A210596 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-1), T(1,0) = T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - _Philippe Deléham_, Mar 25 2012
%F A210596 G.f.: 1/((1-x-x^2) - t*2*x*(1-x)). - _G. C. Greubel_, Dec 15 2018
%e A210596 First five rows:
%e A210596   1
%e A210596   1  2
%e A210596   2  2  4
%e A210596   3  6  4  8
%e A210596   5 10 16  8 16
%e A210596 First three polynomials v(n,x): 1, 1 + 2x, 2 + 2x + 4x^2.
%t A210596 u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t A210596 u[n_, x_] := u[n - 1, x] + v[n - 1, x];
%t A210596 v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
%t A210596 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210596 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A210596 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210596 TableForm[cu]
%t A210596 Flatten[%]   (* A210221 *)
%t A210596 Table[Expand[v[n, x]], {n, 1, z}]
%t A210596 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A210596 TableForm[cv]
%t A210596 Flatten[%]   (* A210596 *)
%t A210596 With[{m = 10}, CoefficientList[CoefficientList[Series[1/((1-x-x^2) - t*2*x*(1-x)), {x, 0, m}, {t, 0, m}], x], t]]//Flatten (* _G. C. Greubel_, Dec 15 2018 *)
%o A210596 (Python)
%o A210596 from sympy import Poly
%o A210596 from sympy.abc import x
%o A210596 def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
%o A210596 def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x)
%o A210596 def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
%o A210596 for n in range(1, 13): print (a(n)) # _Indranil Ghosh_, May 27 2017
%o A210596 (PARI) {T(n,k) = if(n==1 && k==0, 1, if(n==2 && k==0, 1, if(n==2 && k==1, 2, if(k<0 || k>n-1, 0, T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-1) ))))};
%o A210596 for(n=1,15, for(k=0, n-1, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 15 2018
%Y A210596 Cf. A000045, A000079, A001519, A210221, A208510.
%K A210596 nonn,tabl
%O A210596 1,3
%A A210596 _Clark Kimberling_, Mar 24 2012