This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210597 #5 Mar 30 2012 18:58:17 %S A210597 1,2,2,4,5,4,7,13,12,8,12,28,37,28,16,20,58,92,98,64,32,33,114,217, %T A210597 273,248,144,64,54,218,479,713,760,608,320,128,88,407,1018,1727,2161, %U A210597 2024,1456,704,256,143,747,2093,3997,5662,6194,5216,3424,1536,512 %N A210597 Triangle of coefficients of polynomials u(n,x) jointly generated with A210602; see the Formula section. %C A210597 Row n starts with F(n+2)-1, where F=A000045 (Fibonacci %C A210597 numbers), and ends with 2^(n-1). For a discussion and %C A210597 guide to related arrays, see A208510. %F A210597 u(n,x)=2x*u(n-1,x)+v(n-1,x)+1, %F A210597 v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, %F A210597 where u(1,x)=1, v(1,x)=1. %e A210597 First five rows: %e A210597 1 %e A210597 2....2 %e A210597 4....5....4 %e A210597 7....13...12...8 %e A210597 12...28...37...28...16 %e A210597 First three polynomials u(n,x): 1, 2+ 2x, 4 + 5x + 4x^2. %t A210597 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210597 u[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1; %t A210597 v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A210597 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210597 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210597 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210597 TableForm[cu] %t A210597 Flatten[%] (* A210597 *) %t A210597 Table[Expand[v[n, x]], {n, 1, z}] %t A210597 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210597 TableForm[cv] %t A210597 Flatten[%] (* A210602 *) %Y A210597 Cf. A210602, A208510. %K A210597 nonn,tabl %O A210597 1,2 %A A210597 _Clark Kimberling_, Mar 24 2012