cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210598 Triangle of coefficients of polynomials u(n,x) jointly generated with A210599; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 7, 5, 4, 14, 23, 13, 5, 24, 58, 72, 34, 6, 36, 119, 219, 219, 89, 7, 51, 209, 521, 777, 653, 233, 8, 68, 338, 1048, 2101, 2639, 1918, 610, 9, 88, 508, 1902, 4754, 7989, 8679, 5567, 1597, 10, 110, 730, 3180, 9565, 20055, 29062, 27844, 16003
Offset: 1

Views

Author

Clark Kimberling, Mar 24 2012

Keywords

Comments

Row n starts with n and ends with an odd-indexed
Fibonacci number. For a discussion and guide to related
arrays, see A208510.

Examples

			First five rows:
1
2...2
3...7....5
4...14...23...13
5...24...58...72...34
First three polynomials u(n,x): 1, 2+ 2x, 3 + 7x + 5x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210598 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210599 *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.