A210599 Triangle of coefficients of polynomials v(n,x) jointly generated with A210221; see the Formula section.
1, 2, 3, 3, 8, 8, 4, 16, 28, 21, 5, 26, 69, 92, 55, 6, 39, 134, 268, 290, 144, 7, 54, 233, 606, 974, 888, 377, 8, 72, 368, 1196, 2510, 3378, 2662, 987, 9, 92, 550, 2122, 5541, 9760, 11313, 7852, 2584, 10, 115, 780, 3510, 10900, 23825, 36188, 36872
Offset: 1
Examples
First five rows: 1 2...3 3...8....8 4...16...28...21 5...26...69...92...55 First three polynomials v(n,x): 1, 2 + 3x, 3 + 8x + 8x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210598 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210599 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments