cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210630 Decimal expansion of Product_{primes p == 1 (mod 8)} p*(p-8)/(p-4)^2.

Original entry on oeis.org

8, 8, 3, 0, 7, 1, 0, 0, 4, 7, 4, 3, 9, 4, 6, 6, 7, 1, 4, 1, 7, 8, 3, 4, 2, 9, 9, 0, 0, 3, 1, 0, 8, 5, 3, 4, 6, 7, 6, 8, 8, 8, 8, 3, 4, 8, 8, 0, 9, 7, 3, 4, 7, 0, 7, 1, 9, 2, 9, 5, 1, 5, 9, 3, 9, 5, 2, 1, 1, 9, 4, 6, 9, 9, 0, 6, 5, 6, 5, 9, 6, 8, 8, 5, 7, 9, 9, 3, 8, 3, 2, 8, 6, 0, 3, 7, 9, 1, 6, 4, 6, 3, 5, 8, 5, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 25 2012

Keywords

Comments

Equals the product_{s>=2} of 1/zeta_(8,1)(s)^gamma(s), where gamma(s) = 16, 128, 888, 6144, 42256, 293912,... is an Euler transformation of the associated polynomial (1/x)(1/x-8)/(1/x-4)^2, and where the zeta_(m,n)(s) are the zeta prime modulo functions defined in section 3.3 of arXiv:1008.2547.
Note that Product_{k>=1} (8*k-7) * (8*k+1) / (8*k-3)^2 = Pi * 2^(9/2) * Gamma(1/4)^2 / Gamma(1/8)^4 = 0.290040073098462288674... - Vaclav Kotesovec, May 13 2020

Examples

			0.88307100474394667141783429900310853467688883488097347...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := p*(p - 8)/(p - 4)^2;
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17]*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Extensions

More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jan 16 2021