A210637 Triangle T(n,k), read by rows, given by (2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 2, 2, 5, 8, 3, 12, 27, 20, 5, 29, 84, 91, 44, 8, 70, 248, 352, 251, 90, 13, 169, 708, 1240, 1164, 618, 176, 21, 408, 1973, 4106, 4771, 3344, 1414, 334, 34, 985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55
Offset: 0
Examples
Triangle begins : 1 2, 2 5, 8, 3 12, 27, 20, 5 29, 84, 91, 44, 8 70, 248, 352, 251, 90, 13 169, 708, 1240, 1164, 618, 176, 21 408, 1973, 4106, 4771, 3344, 1414, 334, 34 985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55 2378, 14574, 39880, 63966, 66282, 46014, 21400, 6429, 1132, 89 5741, 38896, 119129, 217232, 261185, 216348, 125028, 49772, 13061, 2040, 144
Formula
G.f.: (1+y*x)/(1-(y+2)*x-(y+1)^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
Comments