This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210662 #50 Dec 04 2020 21:09:20 %S A210662 1,2,7,3,22,131,5,71,823,10012,8,228,5096,120465,2810694,13,733,31687, %T A210662 1453535,65805403,2989126727,21,2356,196785,17525619,1539222016, %U A210662 135658637925,11945257052321,34,7573,1222550,211351945,36012826776,6158217253688,1052091957273408,179788343101980135 %N A210662 Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board. %C A210662 The triangle is half of a symmetric square array, since T(n,k) = T(k,n). %C A210662 Equivalently, ways of paving n X k grid cells using only singletons and dominoes. Also, the number of tilings of an n X k chessboard with the two polyominoes (0,0) and (0,0)+(0,1). %C A210662 Also, matchings of the n X k grid graph. The n X k grid graph is also denoted P_m X P_n. For k=2, this is called the ladder graph L_n. %C A210662 In statistical mechanics, this is a special case of the Monomer-Dimer Problem, which deals with monomer-dimer coverings of a finite patch of a lattice. %C A210662 Right hand diagonal is A028420. Left hand diagonal is A000045. %C A210662 Taken as a full square array, columns (and rows) 1-7 respectively match A000045(n+1), A030186, A033506(n-1), A033507(n-1), A033508(n-1), A033509(n-1), A033510(n-1), and have recurrences of order 2 3 6 9 20 36 72. - _R. H. Hardin_, Dec 11 2012 %D A210662 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412. %D A210662 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University. %H A210662 Alois P. Heinz, <a href="/A210662/b210662.txt">Rows n = 1..18, flattened</a> %H A210662 Ahrens, J. H. <a href="http://dx.doi.org/10.1016/0097-3165(81)90061-3">Paving the chessboard</a>. J. Combin. Theory Ser. A 31(1981), no. 3, 277--288. MR0635371 (84d:05009). See Table I. - _N. J. A. Sloane_, Mar 27 2012 %H A210662 Anzalone, Nick, et al. <a href="http://arxiv.org/abs/math/0304359">A Reciprocity Theorem for Monomer-Dimer Coverings.</a> DMCS. 2003. arXiv:math/0304359 [math.CO] %H A210662 F. Cazals, <a href="http://algo.inria.fr/libraries/autocomb/MonoDiMer-html/MonoDiMer.html">Monomer-Dimer Tilings</a>, 1997. %H A210662 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/md/md.html">Two Dimensional Monomer-Dimer Constant</a> [Broken link] %H A210662 Steven R. Finch, <a href="http://web.archive.org/web/20010608043455/http://www.mathsoft.com/asolve/constant/md/md.html">Two Dimensional Monomer-Dimer Constant</a> [From the Wayback machine] %H A210662 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 362 %H A210662 Friedland, Shmuel, and Uri N. Peled, <a href="http://arxiv.org/abs/math/0402009">Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem.</a> arXiv:math/0402009 [math.CO] %H A210662 H. Hosoya and A. Motoyama, <a href="http://scitation.aip.org/content/aip/journal/jmp/26/1/10.1063/1.526778">An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices</a>, J. Math. Physics 26 (1985) 157-167 (eq. (26) and Table V). %H A210662 C. Kenyon, D. Randall, and A. Sinclair, <a href="http://link.springer.com/article/10.1007/BF02183743">Approximating the number of monomer-dimer coverings of a lattice</a>, Journal of Statistical Physics 83 (1996), 637-659. %H A210662 David Friedhelm Kind, <a href="https://doi.org/10.13140/RG.2.2.11182.54086">The Gunport Problem: An Evolutionary Approach</a>, De Montfort University (Leicester, UK, 2020). %H A210662 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors.pdf">Enumeration of matchings in polygraphs</a>, 1998. %H A210662 R. C. Read, <a href="http://link.springer.com/article/10.1007/BF02193034">The dimer problem for narrow rectangular arrays: A unified method of solution, and some extensions</a>, Aequationes Mathematicae, 24 (1982), 47-65. %H A210662 Ralf Stephan, <a href="/A210662/a210662.gif">Animation of all 71 matchings of the P(2) X P(4) graph</a> %H A210662 D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/tokhniot/DOMINO">Source</a> %H A210662 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %H A210662 <a href="/index/Mat#matchings">Index entries for sequences related to matchings</a> %H A210662 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a> %F A210662 T(1,n) = A000045(n+1), T(2,n) = A030186(n), T(3,n) = A033506(n), T(4,n) = A033507(n), T(5,n) = A033508(n), T(6,n) = A033509(n), T(7,n) = A033510(n), T(8,n) = A033511(n), T(9,n) = A033512(n), T(10,n) = A033513(n), T(11,n) = A033514(n), T(n,n) = A028420(n). %e A210662 Triangle begins: %e A210662 1 %e A210662 2 7 %e A210662 3 22 131 %e A210662 5 71 823 10012 %e A210662 8 228 5096 120465 2810694 %e A210662 13 733 31687 1453535 65805403 2989126727 %e A210662 21 2356 196785 17525619 1539222016 135658637925 11945257052321 %e A210662 34 7573 1222550 211351945 36012826776 6158217253688 1052091957273408 179788343101980135... %e A210662 The 7 matchings of the P(2) X P(2)-graph are: %e A210662 . . .-. . . . . . . . . .-. %e A210662 | | | | %e A210662 . . . . . . . . .-. . . .-. %o A210662 (Sage) %o A210662 from sage.combinat.tiling import TilingSolver, Polyomino %o A210662 def T(n, k): %o A210662 p = Polyomino([(0, 0)]) %o A210662 q = Polyomino([(0, 0), (0, 1)]) %o A210662 T = TilingSolver([p, q], box=[n, k], reusable=True) %o A210662 return T.number_of_solutions() %o A210662 # _Ralf Stephan_, May 22 2014 %K A210662 nonn,tabl %O A210662 1,2 %A A210662 _N. J. A. Sloane_, Mar 28 2012 %E A210662 Typo in term 27 corrected by _Alois P. Heinz_, Dec 03 2012 %E A210662 Reviewed by _Ralf Stephan_, May 22 2014