This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210665 #16 Feb 28 2015 23:16:20 %S A210665 4,6,9,0,0,51,4,22,4,62,33,0,0,0,93,4,94,15,55,15,85,26,4,4,0,77,4,58, %T A210665 4,6,0,39,49,0,0,111,511,0,0,121,221,321,921,0,0,141,0,341,0,0,551, %U A210665 851,951,161,0,961,771,871,381,581,781,0,6,202,302,502,14 %N A210665 Least semiprime dividing digit reversal of n-th semiprime, or 0 if no such factor. %H A210665 Alois P. Heinz, <a href="/A210665/b210665.txt">Table of n, a(n) for n = 1..10000</a> %F A210665 a(n) = A210615(A210616(n)). %e A210665 a(4) = 0 because the 4th semiprime is 10, and R(10) = 1, which is not divisible by any semiprime. %e A210665 a(6) = 51 because the 6th semiprime is 15, and R(15) = 51, which is itself semiprime. %e A210665 a(7) = 4 because the 7th semiprime is 21, R(21) = 12, and 4 is the least semiprime divisor of 12. %p A210665 r:= proc(n) option remember; local q; %p A210665 `if`(n<10, n, irem(n, 10, 'q') *10^(length(n)-1)+r(q)) %p A210665 end: %p A210665 b:= proc(n) option remember; local k; %p A210665 if n=0 then 0 %p A210665 else for k from b(n-1)+1 %p A210665 while isprime(k) or 2<>add (i[2], i=ifactors(k)[2]) %p A210665 do od; k %p A210665 fi %p A210665 end: %p A210665 a:= proc(n) option remember; local m, k; %p A210665 m:= r(b(n)); %p A210665 for k from 4 to m do %p A210665 if irem(m, k)=0 and not isprime(k) and %p A210665 add(i[2], i=ifactors(k)[2])=2 then return k fi %p A210665 od; 0 %p A210665 end: %p A210665 seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 28 2012 %Y A210665 Cf. A001358, A210615, A210616. %K A210665 nonn,base,look,easy %O A210665 1,1 %A A210665 _Jonathan Vos Post_, Mar 28 2012