cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210681 Number of ways to write 2n = p+q+r (p<=q) with p, q, r-1, r+1 all prime and p-1, p+1, q-1, q+1, r all practical.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 3, 3, 2, 2, 3, 5, 6, 4, 3, 2, 4, 7, 10, 8, 5, 3, 5, 8, 12, 10, 6, 2, 3, 6, 11, 12, 6, 4, 3, 5, 9, 10, 6, 5, 4, 5, 8, 8, 5, 7, 7, 6, 8, 7, 6, 6, 8, 6, 7, 8, 5, 7, 8, 6, 7, 7, 4, 6, 7, 5, 6, 8, 4, 8, 6, 4, 5, 7, 5, 5, 8, 5, 6, 8, 6, 4, 7, 6, 6, 7, 5, 3, 7, 3, 4, 8, 6, 8, 5, 4, 3, 7, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 29 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4.
This conjecture involves two kinds of sandwiches introduced by the author, and it is much stronger than the Goldbach conjecture for odd numbers. We have verified the conjecture for n up to 10^7.
Zhi-Wei Sun also made the following conjectures:
(1) Any even number greater than 10 can be written as the sum of four elements in the set
S = {prime p: p-1 and p+1 are both practical}.
Also, every n=3,4,5,... can be represented as the sum of a prime in S and two triangular numbers.
(2) Each integer n>7 can be written as p + q + x^2 (or p + q + x(x+1)/2), where p is a prime with p-1 and p+1 both practical, and q is a practical number with q-1 and q+1 both prime.
(3) Every n=3,4,... can be written as the sum of three elements in the set
T = {x: 6x is practical with 6x-1 and 6x+1 both prime}.
(4) Any integer n>6 can be represented as the sum of two elements of the set S and one element of the set T.
(5) Each odd number greater than 11 can be written in the form 2p+q+r, where p and q belong to S, and r is a practical number with r-1 and r+1 both prime.

Examples

			a(5)=1 since 2*5=3+3+4 with 3 and 5 both prime, and 2 and 4 both practical.
a(6)=2 since 2*6=3+3+6=3+5+4 with 3,5,7 all prime and 2,4,6 all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True
    pq[n_]:=pq[n]=PrimeQ[n-1]==True&&PrimeQ[n+1]==True&&pr[n]==True
    a[n_]:=a[n]=Sum[If[pp[j]==True&&pp[k]==True&&pq[2n-Prime[j]-Prime[k]]==True,1,0],{j,1,PrimePi[n-1]},{k,j,PrimePi[2n-Prime[j]]}]
    Do[Print[n," ",a[n]],{n,1,100}]