A210694 T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.
5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1
Examples
Some solutions for n=3 k=4 .-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0 ..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1 .-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2 ..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..10000
Crossrefs
cf. A179927
Column 1 is A000051(n+1)
Column 2 is A007689(n+1)
Column 3 is A074605(n+1)
Column 4 is A074611(n+1)
Column 5 is A074615(n+1)
Column 6 is A074619(n+1)
Column 7 is A074622(n+1)
Column 8 is A074624(n+1)
Row 1 is A001844
Row 2 is A005898
Row 3 is A008514
Row 4 is A008515
Row 5 is A008516
Row 6 is A036085
Row 7 is A036086
Row 8 is A036087
Formula
T(n,k)=k^(n+1)+(k+1)^(n+1)
Comments