This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210696 #30 Aug 08 2025 05:00:10 %S A210696 1,2,5,16,48,164,559,1952,6872,24520,88006,318444,1158944,4241688, %T A210696 15598973,57620596,213680472,795270644,2969483214,11121038100, %U A210696 41763779054,157235683780,593355907790,2243975358216,8503404201874,32283434698908,122779218918272,467713035691608 %N A210696 Triangulations of the disk, G_{1,n}. %C A210696 This corrects a typographical error in A005497(6). %H A210696 Andrew Howroyd, <a href="/A210696/b210696.txt">Table of n, a(n) for n = 0..500</a> %H A210696 Jean-François Alcover, <a href="/A210696/a210696.txt">Mathematica program</a> %H A210696 William G. Brown, <a href="http://dx.doi.org/10.1112/plms/s3-14.4.746">Enumeration of Triangulations of the Disk</a>, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. %H A210696 William G. Brown, <a href="/A002709/a002709.pdf">Enumeration of Triangulations of the Disk</a>, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy] %p A210696 BrownE := proc(r,n,m) %p A210696 local j,s,p ; %p A210696 if r < 1 then %p A210696 return 0 ; %p A210696 elif r = 1 then %p A210696 return A146305(n,m) ; %p A210696 elif r = 2 then %p A210696 j := n mod 2 ; s := floor(n/2) ; %p A210696 if type(m,'even') then %p A210696 return 0 ; %p A210696 end if; %p A210696 p := (m+1)/2 ; %p A210696 if p > 0 and s >= 0 then %p A210696 return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ; %p A210696 else %p A210696 return 0 ; %p A210696 end if; %p A210696 elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then %p A210696 s := n/3 ; p := m/3 ; %p A210696 if p >= 0 and s >= 0 then %p A210696 return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ; %p A210696 else %p A210696 return 0 ; %p A210696 end if; %p A210696 elif r >= 3 then %p A210696 if ((n-1) mod r) =0 and ((m+3) mod r) =0 then %p A210696 s := (n-1)/r ; p := (m+3)/r-1 ; %p A210696 if p>=0 and s>=0 then %p A210696 return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ; %p A210696 else %p A210696 return 0 ; %p A210696 end if; %p A210696 else %p A210696 return 0 ; %p A210696 end if; %p A210696 else %p A210696 return 0 ; %p A210696 end if; %p A210696 end proc: %p A210696 BrownG := proc(n,m) %p A210696 add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ; %p A210696 %/(m+3) ; %p A210696 end proc: %p A210696 A210696 := proc(n) %p A210696 BrownG(1,n) ; %p A210696 end proc: %p A210696 seq(A210696(n),n=0..25) ; %t A210696 (* See the link section. *) %Y A210696 Row n=1 of A262586. %K A210696 nonn %O A210696 0,2 %A A210696 _R. J. Mathar_, Mar 30 2012 %E A210696 a(26) onwards from _Andrew Howroyd_, Nov 23 2024