A210697 Triangle read by rows, arising in study of alternating-sign matrices.
1, 1, 1, 2, 5, 2, 9, 36, 36, 9, 90, 495, 855, 495, 90, 2025, 14175, 34830, 34830, 14175, 2025, 102060, 867510, 2776032, 4082400, 2776032, 867510, 102060
Offset: 1
Examples
The bivariate g.f. as a table of polynomials. (degree of x is the count of -1 entries in the ASM) Setting x=k gives the k-enumeration of the ASMs n 1 | 1 2 | 1, 1 3 | 2, 2+x, 2 4 | 6+x, 6+7*x+x^2, 6+7*x+x^2, 6+x 5 | 24 + 16*x + 2*x^2, 24 + 52*x + 26*x^2 + 3*x^3, 24 + 64*x + 38*x^2 + | 8*x^3 + x^4, 24 + 52*x + 26*x^2 + 3*x^3, 24 + 16*x + 2*x^2 ... Triangle begins: n 1 | 1 2 | 1 1 3 | 2 5 2 4 | 9 36 36 9 5 | 90 495 855 495 90 6 | 2025 14175 34830 34830 14175 2025 ...
Links
- W. H. Mills, David P Robbins, Howard Rumsey Jr., Alternating sign matrices and descending plane partitions J. Combin. Theory Ser. A 34 (1983), no. 3, 340--359. MR0700040 (85b:05013). See p. 359.
Crossrefs
Extensions
More terms, definitions and examples by Olivier Gérard, Apr 02 2015
Comments