A210722 Number of ways to write n = (2-(n mod 2))p+q+2^k with p, q-1, q+1 all prime, and p-1, p+1, q all practical.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 4, 2, 4, 2, 4, 3, 4, 4, 3, 4, 5, 3, 8, 5, 8, 4, 5, 4, 5, 3, 5, 4, 4, 3, 9, 2, 12, 4, 9, 5, 7, 6, 7, 5, 5, 7, 10, 5, 13, 6, 10, 6, 8, 6, 7, 5, 1, 7, 7, 1, 10, 5, 8, 4, 9, 7, 8, 6, 3, 10, 6, 6, 10, 7, 7, 9, 11, 7, 10, 10, 5, 10, 7, 5, 10, 7, 4, 8, 8, 5, 11, 5, 8, 10, 7, 5, 12, 5
Offset: 1
Keywords
Examples
a(1832)=1 since 1832=2*881+6+2^6 with 5, 7, 881 all prime and 6, 880, 882 all practical. a(11969)=1 since 11969=127+11778+2^6 with 127, 11777, 11779 all prime and 126, 128, 11778 all practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..20000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Sandwiches with primes and practical numbers, a message to Number Theory List, Jan. 13, 2013.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0) pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True pq[n_]:=pq[n]=PrimeQ[n-1]==True&&PrimeQ[n+1]==True&&pr[n]==True a[n_]:=a[n]=Sum[If[pp[j]==True&&pq[n-2^k-(2-Mod[n,2])Prime[j]]==True,1,0],{k,0,Log[2,n]},{j,1,PrimePi[(n-2^k)/(2-Mod[n,2])]}] Do[Print[n," ",a[n]],{n,1,100}]
Comments