cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210722 Number of ways to write n = (2-(n mod 2))p+q+2^k with p, q-1, q+1 all prime, and p-1, p+1, q all practical.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 4, 2, 4, 2, 4, 3, 4, 4, 3, 4, 5, 3, 8, 5, 8, 4, 5, 4, 5, 3, 5, 4, 4, 3, 9, 2, 12, 4, 9, 5, 7, 6, 7, 5, 5, 7, 10, 5, 13, 6, 10, 6, 8, 6, 7, 5, 1, 7, 7, 1, 10, 5, 8, 4, 9, 7, 8, 6, 3, 10, 6, 6, 10, 7, 7, 9, 11, 7, 10, 10, 5, 10, 7, 5, 10, 7, 4, 8, 8, 5, 11, 5, 8, 10, 7, 5, 12, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 29 2013

Keywords

Comments

Conjecture: a(n)>0 except for n = 1,...,8, 10, 520, 689, 740.
Zhi-Wei Sun also guessed that any integer n>6 different from 407 can be written as p+q+F_k, where p is a prime with p-1 and p+1 practical, q is a practical number with q-1 and q+1 prime, and F_k (k>=0) is a Fibonacci number.

Examples

			a(1832)=1 since 1832=2*881+6+2^6 with 5, 7, 881 all prime and 6, 880, 882 all practical.
a(11969)=1 since 11969=127+11778+2^6 with 127, 11777, 11779 all prime and 126, 128, 11778 all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True
    pq[n_]:=pq[n]=PrimeQ[n-1]==True&&PrimeQ[n+1]==True&&pr[n]==True
    a[n_]:=a[n]=Sum[If[pp[j]==True&&pq[n-2^k-(2-Mod[n,2])Prime[j]]==True,1,0],{k,0,Log[2,n]},{j,1,PrimePi[(n-2^k)/(2-Mod[n,2])]}]
    Do[Print[n," ",a[n]],{n,1,100}]