This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210725 #33 Apr 26 2021 11:19:44 %S A210725 1,1,3,1,10,16,1,41,101,125,1,196,756,1176,1296,1,1057,6607,12847, %T A210725 16087,16807,1,6322,65794,160504,229384,257104,262144,1,41393,733833, %U A210725 2261289,3687609,4480569,4742649,4782969,1,293608,9046648,35464816,66025360,87238720,96915520,99637120,100000000 %N A210725 Triangle read by rows: T(n,k) = number of forests of labeled rooted trees with n nodes and height at most k (n>=1, 0<=k<=n-1). %H A210725 Alois P. Heinz, <a href="/A210725/b210725.txt">Rows n = 1..141, flattened</a> %H A210725 J. Riordan, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80033-X">Forests of labeled trees</a>, J. Combin. Theory, 5 (1968), 90-103. %e A210725 Triangle begins: %e A210725 1; %e A210725 1, 3; %e A210725 1, 10, 16; %e A210725 1, 41, 101, 125; %e A210725 1, 196, 756, 1176, 1296; %e A210725 1, 1057, 6607, 12847, 16087, 16807; %e A210725 ... %p A210725 f:= proc(k) f(k):= `if`(k<0, 1, exp(x*f(k-1))) end: %p A210725 T:= (n, k)-> coeff(series(f(k), x, n+1), x, n) *n!: %p A210725 seq(seq(T(n, k), k=0..n-1), n=1..9); # _Alois P. Heinz_, May 30 2012 %p A210725 # second Maple program: %p A210725 T:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add( %p A210725 binomial(n-1, j-1)*j*T(j-1, h-1)*T(n-j, h), j=1..n)) %p A210725 end: %p A210725 seq(seq(T(n, k), k=0..n-1), n=1..10); # _Alois P. Heinz_, Aug 21 2017 %t A210725 f[_?Negative] = 1; f[k_] := Exp[x*f[k-1]]; t[n_, k_] := Coefficient[Series[f[k], {x, 0, n+1}], x, n]*n!; Table[Table[t[n, k], {k, 0, n-1}], {n, 1, 9}] // Flatten (* _Jean-François Alcover_, Oct 30 2013, after Maple *) %o A210725 (Python) %o A210725 from sympy.core.cache import cacheit %o A210725 from sympy import binomial %o A210725 @cacheit %o A210725 def T(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*T(j - 1, h - 1)*T(n - j, h) for j in range(1, n + 1)]) %o A210725 for n in range(1, 11): print([T(n, k) for k in range(n)]) # _Indranil Ghosh_, Aug 21 2017, after second Maple code %Y A210725 Diagonals include A000248, A000949, A000950, A000951, A000272. %K A210725 nonn,tabl %O A210725 1,3 %A A210725 _N. J. A. Sloane_, May 09 2012